Tìm \(n\in N\)để:
\(3n+4⋮n+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=n^4-3n^3+4n^2-3n+3=\left(n^2+1\right)\left(n^2-3n+3\right)\)
Do \(n^2+1>1;\forall x\in Z^+\) nên N là số nguyên tố khi và chỉ khi:
\(\left\{{}\begin{matrix}n^2-3n+3=1\\n^2+1\text{ là số nguyên tố}\end{matrix}\right.\)
\(n^2-3n+3=1\Leftrightarrow n^2-3n+2=0\Rightarrow\left[{}\begin{matrix}n=1\\n=2\end{matrix}\right.\)
Với \(n=1\Rightarrow n^2+1=2\) là SNT (thỏa mãn)
Với \(n=2\Rightarrow n^2+1=5\) là SNT (thỏa mãn)
\(A=\frac{3n+1}{3n-4}=\frac{3n-4+5}{3n-4}=1+\frac{5}{3n-4}\)
Suy ra : A có giá trị là số nguyên \(\Leftrightarrow\frac{5}{3n-4}\inℤ\)
\(\Leftrightarrow5⋮3n-4\left(3n-4\inℤ\right)\)
\(\Leftrightarrow3n-4\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Mà 3n - 4 chia 3 dư 2 \(\Rightarrow3n-4=-1;5\Rightarrow n=1;3\)
Vậy \(n=1;3\)
Để 3n+1/n+1 là số nguyên thì \(3n+3-2⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{0;-2;1;-3\right\}\)
Ta có :
\(\left\{{}\begin{matrix}3n+4⋮2n+1\\2n+1⋮2n+1\end{matrix}\right.\rightarrow\left\{{}\begin{matrix}2\left(3n+4\right)⋮2n+1\\3\left(2n+1\right)⋮2n+1\end{matrix}\right.\\ \rightarrow2\left(3n+4\right)-3\left(2n+1\right)⋮2n+1\\ \rightarrow5⋮2n+1\\ \rightarrow\left\{{}\begin{matrix}2n+1\inƯ\left(5\right)\\2n+1\in N\end{matrix}\right.\\ \rightarrow2n+1\in\left\{1;5\right\}\)
Vậy `n = 0` hoặc `n=2`
=>6n+8 chia hết cho 2n+1
=>6n+3+5 chia hết cho 2n+1
mà n là số tự nhiên
nên \(2n+1\in\left\{1;5\right\}\)
=>\(n\in\left\{0;2\right\}\)
Ta có:\(2n^4+3n^2+1=\left(n^2\right)^2+2n^21^2+1^2+\left(n^4+n^2\right)=\left(n^2+1\right)^2+n^2\left(n^2+1\right)\)
\(=\left(n^2+1\right)\left(2n^2+1\right)\)
Vì \(\left(n^2+1\right)\left(2n^2+1\right)\)mà \(2n^2+1\ge n^2+1\)
\(\Rightarrow2n^2+1⋮n^2+1\)
\(\Rightarrow2n^2+2-1=2\left(n^2+1\right)-1⋮n^2+!\)
\(\Rightarrow-1⋮n^2+1\)
Mà \(n^2+1>0\)
\(\Rightarrow n^2+1=1\Rightarrow n=0\)
Sơ đồ con đường |
Lời giải chi tiết |
Bước 1. Tách. Bước 2. Áp dụng tính chất chia hết của một tổng. Bước 3. Tìm n+1. Bước 4. Tìm n. |
Ta có: 3 n + 4 = 3 n + 3 + 1 = 3 n + 1 + 1 Để 3 n + 4 ⋮ n + 1 thì 1 ⋮ n + 1 ⇒ n + 1 = 1 ⇒ n = 0 |