K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 3 2022

Đặt \(A=n^4-3n^3+4n^2-3n+3=\left(n^2+1\right)\left(n^2-3n+3\right)\)

Do \(n^2+1>1;\forall x\in Z^+\) nên N là số nguyên tố khi và chỉ khi:

\(\left\{{}\begin{matrix}n^2-3n+3=1\\n^2+1\text{ là số nguyên tố}\end{matrix}\right.\)

\(n^2-3n+3=1\Leftrightarrow n^2-3n+2=0\Rightarrow\left[{}\begin{matrix}n=1\\n=2\end{matrix}\right.\)

Với \(n=1\Rightarrow n^2+1=2\) là SNT (thỏa mãn)

Với \(n=2\Rightarrow n^2+1=5\) là SNT (thỏa mãn)

7 tháng 1 2019

\(A=\frac{3n+1}{3n-4}=\frac{3n-4+5}{3n-4}=1+\frac{5}{3n-4}\)

Suy ra : A có giá trị là số nguyên \(\Leftrightarrow\frac{5}{3n-4}\inℤ\)

\(\Leftrightarrow5⋮3n-4\left(3n-4\inℤ\right)\)

\(\Leftrightarrow3n-4\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Mà 3n - 4 chia 3 dư 2 \(\Rightarrow3n-4=-1;5\Rightarrow n=1;3\)

Vậy \(n=1;3\)

Để 3n+1/n+1 là số nguyên thì \(3n+3-2⋮n+1\)

\(\Leftrightarrow n+1\in\left\{1;-1;2;-2\right\}\)

hay \(n\in\left\{0;-2;1;-3\right\}\)

17 tháng 5 2022

3n + 1 = (3n + 3) - 2 = 3(n + 1) - 2

3(n + 1) ⋮ n + 1

=> để (3n + 1)/(n + 1) ∈ Z <=> 2 ⋮ n + 1

<=> n + 1 ∈ Ư(2) = {±1; ±2}

=> ta có bảng:

n+11-12-2
n0-21-3

vậy để (3n + 1)/(n + 1) ∈ Z thì n ∈ {-3; -2; 0; 1}

17 tháng 1 2023

Ta có :

 \(\left\{{}\begin{matrix}3n+4⋮2n+1\\2n+1⋮2n+1\end{matrix}\right.\rightarrow\left\{{}\begin{matrix}2\left(3n+4\right)⋮2n+1\\3\left(2n+1\right)⋮2n+1\end{matrix}\right.\\ \rightarrow2\left(3n+4\right)-3\left(2n+1\right)⋮2n+1\\ \rightarrow5⋮2n+1\\ \rightarrow\left\{{}\begin{matrix}2n+1\inƯ\left(5\right)\\2n+1\in N\end{matrix}\right.\\ \rightarrow2n+1\in\left\{1;5\right\}\)

Vậy `n = 0` hoặc `n=2` 

=>6n+8 chia hết cho 2n+1

=>6n+3+5 chia hết cho 2n+1

mà n là số tự nhiên

nên \(2n+1\in\left\{1;5\right\}\)

=>\(n\in\left\{0;2\right\}\)

Ta có:\(2n^4+3n^2+1=\left(n^2\right)^2+2n^21^2+1^2+\left(n^4+n^2\right)=\left(n^2+1\right)^2+n^2\left(n^2+1\right)\)

\(=\left(n^2+1\right)\left(2n^2+1\right)\)

Vì \(\left(n^2+1\right)\left(2n^2+1\right)\)mà \(2n^2+1\ge n^2+1\)

\(\Rightarrow2n^2+1⋮n^2+1\)

\(\Rightarrow2n^2+2-1=2\left(n^2+1\right)-1⋮n^2+!\)

\(\Rightarrow-1⋮n^2+1\)

Mà \(n^2+1>0\)

\(\Rightarrow n^2+1=1\Rightarrow n=0\)

8 tháng 1 2017

2 tháng 5 2017

Sơ đồ con đường

Lời giải chi tiết

Bước 1. Tách.

Bước 2. Áp dụng tính chất chia hết của một tổng.

Bước 3. Tìm n+1.

Bước 4. Tìm n.

Ta có: 3 n + 4 = 3 n + 3 + 1 = 3 n + 1 + 1

Để  3 n + 4 ⋮ n + 1  thì  1 ⋮ n + 1

⇒ n + 1 = 1 ⇒ n = 0