K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2017

Điều kiện : \(x\in R\)

\(x^2-3x+\frac{7}{2}=\sqrt{\left(x^2-2x+2\right)\left(x^2+4x+4\right)}\)

\(\Leftrightarrow\left(x^2-3x+\frac{7}{2}\right)^2=\left(x^2-2x+2\right)\left(x^2+4x+4\right)\)

\(\Leftrightarrow x^4+9x^2+\frac{49}{4}-6x^3+7x^2-21x=x^4+4x^3+4x^2-2x^3-8x^2-8x+2x^2+8x+8\)

\(\Leftrightarrow-6x^3+16x^2-21x+\frac{49}{4}=2x^3-2x^2+8\)

\(\Leftrightarrow-8x^3+18x^2-21x+\frac{17}{4}=0\)

\(\Leftrightarrow-8x^3+2x^2+16x^2-4x-17x+\frac{17}{4}=0\)

\(\Leftrightarrow-2x^2\left(4x-1\right)+4x\left(4x-1\right)-17\left(4x-1\right)=0\)

\(\Leftrightarrow\left(4x-1\right)\left(2x^2-4x+17\right)=0\)

\(\Leftrightarrow4x-1=0\Leftrightarrow x=\frac{1}{4}\)    (nhận)          ( 2x2 - 4x + 17 >= 0 với mọi x thuộc R)

Chủ nhật tuần này mình tổ chức mini game Các bạn giúp mình giải 3 bài toán nhé 4 bạn nhanh nhất sẽ đc quà nhaChủ nhật nình sẽ xem bạn nào nhanh tay nhất để nhận quà nhaLàm hết nha làm từng vức một mới đc nhận quà Mình hứa Bài 1 tìm x...
Đọc tiếp

Chủ nhật tuần này mình tổ chức mini game 

Các bạn giúp mình giải 3 bài toán nhé 

4 bạn nhanh nhất sẽ đc quà nha

Chủ nhật nình sẽ xem bạn nào nhanh tay nhất để nhận quà nha

Làm hết nha làm từng vức một mới đc nhận quà 

Mình hứa 

Bài 1 tìm x biết

1/2.(2/5x-4x)+(2x+5).x=-13/2

2x^2+3(x-1).(x+1)=5x(x-1)

(5x-1).(2x-7)-(2x-3).(5x+9)

(3x+4).(5x-1)+(5x+2).(1-3x)+2=0

(5x-1).(2x+3)-3.(3x-1)=0

X^3(2x-3)-x^2(4x^2-6x+2)=0

2x(x-5)-x(3+2x)=0

X(x-1)-x^2+2x=5

8(x-2)-2(3x-4)=2

Bài 2 tính giá trị các biểu thức sau

A=2x(x-3y)-3y(x+2)-2(x^2-4xy-3y) vs x=2/3 ,y=3/4

B=3x(x-4y)-12/5y(y-5x) vs x=4,y=-5

C=(x-4).(x-2)-(x-1).(x-3) vs x=7/4

D=xy(x+y)-x^2(x+y)-y^2(x-y) vs x=3,y=2

E=(3x-1)^2+3(3x-1).(2x+1)+(2x+1)^2  x=5

F=(2x+3)^2-2(2x+3).(2x+5)+(2x+5)^2 vs x=2010

G=4x^2(5x-3y)-5x^2(4x+y) vs x=-2, y=-3

Bài 3 chứng minh các biểu thức sau ko thuộc biến

A=3x(x-5y)+(y-5x)(-3y)-3(x^2-y^2)-1

B=(3x-5).(2x+11)-(2x+3).(3x+7)

C=x(2x+1)-x^2(x+2)+(x^3-x+3)

D=z(y-x)+y(z-x)+x(y+z)

E=x(x^2+x+1)-x^2(x+1)-x+5

Thank các bạn 

nhớ chủ nhật nha 

Mình sẽ xem ai nhanh nhất 

Sau đó gửi mail cho mình để nhận quà nha

0
17 tháng 9 2021

\(2,\\ a,\sqrt{4x-4}+\sqrt{9x-9}-\sqrt{25x-25}=7\left(x\ge1\right)\\ \Leftrightarrow2\sqrt{x-1}+3\sqrt{x-1}-5\sqrt{x-1}=7\\ \Leftrightarrow0\sqrt{x-1}=7\Leftrightarrow x\in\varnothing\\ b,\sqrt{2x^2-3}=4\left(x\le-\dfrac{\sqrt{6}}{2};\dfrac{\sqrt{6}}{2}\le x\right)\\ \Leftrightarrow2x^2-3=16\\ \Leftrightarrow x^2=\dfrac{19}{2}\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{19}{2}}\left(tm\right)\\x=-\sqrt{\dfrac{19}{2}}\left(tm\right)\end{matrix}\right.\)

17 tháng 9 2021

\(1,\\ A=\sqrt{5+4x}+\sqrt{7-3x}\\ ĐKXĐ:\left\{{}\begin{matrix}5+4x\ge0\\7-3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{5}{4}\\x\le\dfrac{7}{3}\end{matrix}\right.\)

 

13 tháng 11 2016

Câu 1:

\(2x^3-3x^2+x+a\)

\(=2\left(x^3-6x^2+12x-8\right)+9\left(x^2-4x+4\right)+13\left(x-2\right)+\left(6+a\right)\)

\(=2\left(x-2\right)^3+9\left(x-2\right)^2+13\left(x-2\right)+\left(6+a\right)\)chia hết cho \(x-2\)khi và chỉ khi :

\(6+a=0\Leftrightarrow a=-6\). Vậy \(a=-6\).

Câu 2:

\(\left(x+1\right)\left(2x-x\right)-\left(3x+5\right)\left(x+2\right)=4x^2+1\)

\(\Leftrightarrow x^2+x-\left(3x^2+11x+10\right)=-4x^2+1\)

\(\Leftrightarrow x^2+x-3x^2-11x-10+4x^2-1=0\)

\(\Leftrightarrow2x^2-10x-11=0\)

\(\Delta'=\left(-5\right)^2-2\left(-11\right)=47>0\)

\(\Rightarrow\)Phương trình có 2 nghiệm phân biệt:

\(x=\frac{5+\sqrt{47}}{2}\)hoặc \(x=\frac{5-\sqrt{47}}{2}\)

Vậy phương trình có tập nghiệm \(S=\left\{\frac{5+\sqrt{47}}{2};\frac{5-\sqrt{47}}{2}\right\}\)

12 tháng 11 2019

3-2x=1

2x=2

x=1

12 tháng 11 2019

câu 1 là |3-2x|= 1 - x nha  :< mình viết thiếu

6 tháng 8 2017

a)Đặt \(\hept{\begin{cases}\sqrt{x+2}=a\\\sqrt{4-x}=b\end{cases}\left(a,b>0\right)}\) thì ta có;

\(a-b+ab+3=0\)

\(\Leftrightarrow a-b+ab-1=-4\)

\(\Leftrightarrow b\left(a-1\right)+\left(a-1\right)=-4\)

\(\Leftrightarrow\left(b+1\right)\left(a-1\right)=-4\)

Xét Ư(-4) giải pt ta có \(\hept{\begin{cases}a=-3\\b=0\end{cases}};\hept{\begin{cases}a=-1\\b=1\end{cases}};\hept{\begin{cases}a=0\\b=3\end{cases}};\hept{\begin{cases}a=2\\b=-5\end{cases}};\hept{\begin{cases}a=3\\b=-3\end{cases}}\)

Dễ thấy các nghiệm thu được chẳng có cái nào cả \(a,b>0\) nên ta có VÔ NGHIỆm

b)\(5\sqrt{x^3+1}=2\left(x^2+2\right)\)

ĐK; \(x\ge-1\)

\(pt\Leftrightarrow25\left(x^3+1\right)=4\left(x^2+2\right)^2\)

\(\Leftrightarrow-4x^4+25x^3-16x^2+9=0\)

\(\Leftrightarrow-\left(x^2-5x-3\right)\left(4x^2-5x+3\right)=0\)

Dễ thấy: \(4x^2-5x+3=0\) thì 

\(\Leftrightarrow4\left(x-\frac{5}{8}\right)^2+\frac{23}{16}>0\forall x\) ( vô nghiệm)

Nên \(x^2-5x-3=0\Leftrightarrow x=\frac{5\pm\sqrt{37}}{2}\) (thỏa)

P/s: lấy số điện thoại ở đây ko tiện, nếu muốn cảm ơn hoặc ko hiểu chỗ nào thì ib nhé

13 tháng 7 2018

Thắng Nguyễn làm sai rồi. đây là giải phương trình chứ có phải là phương trình nghiệm nguyên đâu nên ko thể xét ước đc

P(x)=2x^4+2x^3-5x+3

Q(x)=4x^4-2x^3+2x^2+5x-2

P(x)+Q(x)

=2x^4+2x^3-5x+3+4x^4-2x^3+2x^2+5x-2

=6x^4+2x^2+1

9 tháng 6 2018

a) ( x - 3)4 + ( x - 5)4 = 82

Đặt : x - 4 = a , ta có :

( a + 1)4 + ( a - 1)4 = 82

⇔ a4 + 4a3 + 6a2 + 4a + 1 + a4 - 4a3 + 6a2 - 4a + 1 = 82

⇔ 2a4 + 12a2 - 80 = 0

⇔ 2( a4 + 6a2 - 40) = 0

⇔ a4 - 4a2 + 10a2 - 40 = 0

⇔ a2( a2 - 4) + 10( a2 - 4) = 0

⇔ ( a2 - 4)( a2 + 10) = 0

Do : a2 + 10 > 0

⇒ a2 - 4 = 0

⇔ a = + - 2

+) Với : a = 2 , ta có :

x - 4 = 2

⇔ x = 6

+) Với : a = -2 , ta có :

x - 4 = -2

⇔ x = 2

KL.....

b) ( n - 6)( n - 5)( n - 4)( n - 3) = 5.6.7.8

⇔ ( n - 6)( n - 3)( n - 5)( n - 4) = 1680

⇔ ( n2 - 9n + 18)( n2 - 9n + 20) = 1680

Đặt : n2 - 9n + 19 = t , ta có :

( t - 1)( t + 1) = 1680

⇔ t2 - 1 = 1680

⇔ t2 - 412 = 0

⇔ ( t - 41)( t + 41) = 0

⇔ t = 41 hoặc t = - 41

+) Với : t = 41 , ta có :

n2 - 9n + 19 = 41

⇔ n2 - 9n - 22 = 0

⇔ n2 + 2n - 11n - 22 = 0

⇔ n( n + 2) - 11( n + 2) = 0

⇔ ( n + 2)( n - 11) = 0

⇔ n = - 2 hoặc n = 11

+) Với : t = -41 ( giải tương tự )

8 tháng 6 2018

@Giáo Viên Hoc24.vn

@Giáo Viên Hoc24h

@Giáo Viên

@giáo viên chuyên

@Akai Haruma

25 tháng 3 2017

a)\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}\)

=\(\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}\ge6\)(1)

mặt khác 5-2x-x2=6-(x+1)2\(\le6\)(2)

từ (1) và (2)=>dấu = xảy ra khi VP =6 =VTtức x=-1

b)\(\sqrt{3x^2+6x+12}\)+\(\sqrt{5x^4+10x^2+9}\)

=\(\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2+1\right)^2+4}>5\)(x2+1>0)(1')

mặt khác VP=5-2(x+1)2\(\le\)5(2')

từ (1') và (2')=> pt vô nghiệm

21 tháng 9 2019

vì sao lại có : căn(3(x+1)^2+4) +căn(5(x+1)^2+16) >=6 vậy ạ?