Tính \(\sqrt{A}\)
A = 13 - \(2\sqrt{42}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = \(13-2\sqrt{42}=\left(\sqrt{7}-\sqrt{6}\right)^2\)
<=> \(\sqrt{A}=\sqrt{7}-\sqrt{6}\)
b) \(A=46+6\sqrt{5}=\left(\sqrt{45}+1\right)^2\)
<=> \(\sqrt{A}=\sqrt{45}+1\)
c) \(A=12-3\sqrt{15}=\dfrac{1}{2}\left(24-6\sqrt{15}\right)=\dfrac{1}{2}\left(\sqrt{15}-3\right)^2\)
<=> \(\sqrt{A}=\dfrac{1}{\sqrt{2}}\left(\sqrt{15}-3\right)\)
\(a.\sqrt{94-42\sqrt{5}}-\sqrt{94+42\sqrt{5}}=\sqrt{49-2.7.3\sqrt{5}+45}-\sqrt{49+2.7.3\sqrt{5}+45}=7-3\sqrt{5}-7-3\sqrt{5}=-6\sqrt{5}\) \(b.\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}=\dfrac{\sqrt{7+2\sqrt{7}+1}-\sqrt{7-2\sqrt{7}+1}}{\sqrt{2}}=\dfrac{\sqrt{7}+1-\sqrt{7}+1}{\sqrt{2}}=\sqrt{2}\) \(c.\sqrt{5-\sqrt{13+\sqrt{48}}}=\sqrt{5-\sqrt{12+2.2\sqrt{3}+1}}=\sqrt{3-2\sqrt{3}+1}=\sqrt{3}-1\)
đặt\(a=\sqrt[3]{5+2\sqrt{13}}\\ b=\sqrt[3]{5-\sqrt{13}}\)
ta có \(A^3=a^3+3ab\left(a+b\right)+b^3=5+2\sqrt{13}+5-2\sqrt{13}\\ \)
<=>\(A^3=10+3\sqrt[3]{\left(5+2\sqrt{13}\right)\left(5-2\sqrt{13}\right)}\cdot A\)
<=>\(A^3=10-9A\)
<=>\(A^3+9A-10=0\)\(\)
<=>\(A^3+10A-A-10=0\)
<=>\(A\left(A^2-1\right)+10\left(A-1\right)=0\)
<=>\(\left(A-1\right)\left(A^2+A+10\right)=0\)
Vì \(A^2+A+10>0\left(\forall A\right)\)
\(=>A-1=0\\ A=1\)
Ta có
\(\left(\sqrt{27+10\sqrt{2}}-\sqrt{27-10\sqrt{2}}\right)^2\)
\(=27+10\sqrt{2}+27-10\sqrt{2}-2\sqrt{\left(27+10\sqrt{2}\right)\left(27-10\sqrt{2}\right)}\)
\(=54-2\sqrt{529}=8\)
\(\Rightarrow\) \(\sqrt{27+10\sqrt{2}}-\sqrt{27-10\sqrt{2}}=\sqrt{8}=2\sqrt{2}\)
Xét tử số
\(\left(27+10\sqrt{2}\right)\sqrt{27-10\sqrt{2}}-\left(27-10\sqrt{2}\right)\sqrt{27+10\sqrt{2}}\)
\(=\left(\sqrt{27+10\sqrt{2}}.\sqrt{27-10\sqrt{2}}\right)\left(\sqrt{27+10\sqrt{2}}-\sqrt{27-10\sqrt{2}}\right)\)
\(=23\left(\sqrt{27+10\sqrt{2}}-\sqrt{27-10\sqrt{2}}\right)\)
\(=23.2\sqrt{2}=46\sqrt{2}\)
Lại có \(\left(\sqrt{\sqrt{13}-3}+\sqrt{\sqrt{13}+3}\right)^2\)
\(=\sqrt{13}-3+\sqrt{13}+3+2\sqrt{\left(\sqrt{13}-3\right)\left(\sqrt{13}+3\right)}\)
\(=2\sqrt{13}+2\sqrt{4}=2\sqrt{13}+4\)
ta bình phương mẫu số
\(\left(\frac{\sqrt{\sqrt{13}-3}+\sqrt{\sqrt{13}+3}}{\sqrt{\sqrt{13}+2}}\right)^2=\frac{\left(\sqrt{\sqrt{13}-3}+\sqrt{\sqrt{13}+3}\right)^2}{\sqrt{13}+2}\)
\(=\frac{2\sqrt{13}+4}{\sqrt{13}+2}=2\)
Vậy mẫu \(=\sqrt{2}\)
Vậy \(x=\frac{46\sqrt{2}}{\sqrt{2}}=46\) thay vào ta đc A = 92880
Lời giải:
\(x=\frac{\sqrt{13-4\sqrt{3}}}{2}=\frac{\sqrt{13-2\sqrt{12}}}{2}=\frac{\sqrt{12+1-2\sqrt{12}}}{2}=\frac{\sqrt{(\sqrt{12}-1)^2}}{2}=\frac{\sqrt{12}-1}{2}\)
\(2A=1+\frac{7}{2\sqrt{x}-3}=1+\frac{7}{\sqrt{2\sqrt{12}-2}}\)
\(A=\frac{1}{2}+\frac{7}{2\sqrt{4\sqrt{3}-2}}\)
Tương tự nhá bạn,tự làm cho quen.
Chúc bạn học tốt