K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2017

Biến đổi tương đương :

\(\left|a-b\right|+\left|b-c\right|+\left|c-a\right|\ge\sqrt{a^2+b^2+c^2-ab-bc-ac}\)

\(\Leftrightarrow4\left|a-b\right|+4\left|b-c\right|+4\left|c-a\right|\ge\sqrt{2a^2+2b^2+2c^2-2ab-2bc-2ac}\)

\(\Leftrightarrow4\left|a-b\right|+4\left|b-c\right|+4\left|c-a\right|\ge\sqrt{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)

Đặt \(\left|a-b\right|=x;\left|b-c\right|=y;\left|c-a\right|=z\)

\(BĐT\Leftrightarrow4x+4y+4z\ge\sqrt{x^2+y^2+z^2}\)

\(\Leftrightarrow16\left(x^2+y^2+z^2+2xy+2yz+2xy\right)\ge x^2+y^2+z^2\)

\(\Leftrightarrow15x^2+15y^2+15z^2+32xy+32yz+32xz\ge0\) (luôn đúng vì \(x;y;z\ge0\))

Vậy \(\left|a-b\right|+\left|b-c\right|+\left|c-a\right|\ge\sqrt{a^2+b^2+c^2-ab-bc-ac}\)

21 tháng 7 2019

Đặt\(A=\left|a-b\right|+\left|b-c\right|+\left|c-d\right|+\left|d-a\right|\)

\(\Rightarrow A=\left|a-b\right|+\left(a-b\right)+\left|b-c\right|+\left(b-c\right)\)

\(+\left|c-d\right|+\left(c-d\right)+\left|d-a\right|+\left(d-a\right)\)

Ta có: \(\left|x\right|+x=\hept{\begin{cases}2x,x\ge0\\0,x\le0\end{cases}}\)nên \(\left|x\right|+x\)luôn là số chẵn.

Vậy A là số chẵn hay \(\left|a-b\right|+\left|b-c\right|+\left|c-d\right|+\left|d-a\right|\)luôn chẵn

9 tháng 9 2015

Bài đẹp quá!

Ta kí hiệu \(S_a,S_b,S_c\) lần lượt là diện tích của các tam giác \(\Delta IBC,\Delta ICA,\Delta IAB\). Từ công thức tỉ số diện tích ta suy ra \(\frac{IA}{IM}=\frac{S_b+S_c}{S_a},\) tương tự cho 2 tỉ số còn lại. Thành thử ta cần chứng minh \(\sqrt{\frac{S_b+S_c}{S_a}}+\sqrt{\frac{S_c+S_a}{S_b}}+\sqrt{\frac{S_a+S_b}{S_a}}\ge3\sqrt{2}\)

Có nhiều cách xử lý cậu này: ví dụ theo bất đẳn thức Cauchy  \(\sqrt{\frac{S_b+S_c}{2S_a}}\ge\frac{2\left(S_b+S_c\right)}{2S_a+S_b+S_c}=\frac{2\left(S_b+S_c\right)^2}{2S_a\left(S_b+S_c\right)+\left(S_b+S_c\right)^2}\)

Tương tự cho 2 bất đẳng thức nữa rồi cộng lại ta sẽ được

\(\sqrt{\frac{S_b+S_c}{2S_a}}+\sqrt{\frac{S_c+S_a}{2S_b}}+\sqrt{\frac{S_a+S_b}{2S_a}}\ge\frac{8\left(S_a+S_b+S_c\right)^2}{4\left(S_aS_b+S_bS_c+S_cS_a\right)+2\left(S_a^2+S_b^2+S_c^2+S_aS_b+S_bS_c+S_cS_a\right)}\)

Từ bất đẳng thức quen thuộc \(S_a^2+S_b^2+S_c^2\ge S_aS_b+S_bS_c+S_cS_a\) ta suy ra

\(\frac{8\left(S_a+S_b+S_c\right)^2}{4\left(S_aS_b+S_bS_c+S_cS_a\right)+2\left(S_a^2+S_b^2+S_c^2+S_aS_b+S_bS_c+S_cS_a\right)}\ge3\)

Do đó ta có ĐPCM.

15 tháng 8 2019

Trần Thanh Phương, svtkvtm, tth, Lê Thảo, @Akai Haruma,

@Nguyễn Việt Lâm

15 tháng 8 2019

bach nhac lam bao giờ bạn cần ?

9 tháng 3 2017

do tia phân giác của góc A và B cắt nhau tại I =>I là trọng tâm=>IC là phân giác của góc C