Phân tích đa thức thành nhân tử:
\(6x^2-xy+2y^2+3x-2y\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,3x-15xy=3x\left(1-5y\right)\\ ---\\ 8x^2+6x-4=2\left(4x^2+3x-2\right)\\ ---\\ 5x^2+25xy+10y^2=5\left(x^2+5xy+2y^2\right)\\ ---\\ 9x^2y^2+6x^2y-\dfrac{1}{2}xy^2=\dfrac{1}{2}xy\left(18xy+12x-y\right)\)
a) xy+3x-7y-21
=x(y+3)-7(x+3)
=(x-7)(y+3)
b)2xy-15-6x-5y
=2x(y-3)-5(-3+y)
=(2x-5)(y-3)
c)2x^2y+2xy^2-2x-2y
=2x(xy-1)+2y(xy-1)
=(2x+2y)(xy-1)
x(x+3)-5x(x-5)-5(x+3)
=(x-5)(x+3)-5x(x-5)
=(x-5)(x+3-5x)
Câu cuối mình bị nhầm dòng cuối phải là (x-5)(x+3+x-5)=(x-5)(2x-2)nha bạn
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(x^4y-3x^3y^2+3x^2y^3+xy^4=xy\left(x^3-3x^2y+3xy^2+y^3\right)\)
^2 + 4xy - 16 + 4y^2
= x^2 + 4xy + 4y^2 - 4^2
= (x + 2y)^2 - 4^2
= (x + 2y - 4)(x + 2y + 4)
2x^2-5xy-3y^2
= 2^x + xy - 6xy - 3y^2
= x(2x + y) - 3y(2x + y)
= (2x + y)(x - 3y)
a: \(12x^3-6x^2+3x\)
\(=3x\cdot4x^2-3x\cdot2x+3x\cdot1\)
\(=3x\left(4x^2-2x+1\right)\)
b: \(\dfrac{2}{5}x^2+5x^3+x^2y\)
\(=x^2\cdot\dfrac{2}{5}+x^2\cdot5x+x^2\cdot y\)
\(=x^2\left(\dfrac{2}{5}+5x+y\right)\)
c: \(14x^2y-21xy^2+28x^2y^2\)
\(=7xy\cdot2x-7xy\cdot3y+7xy\cdot4xy\)
\(=7xy\left(2x-3y+4xy\right)\)
hey girl fix đề đi nhé hình như sai rồi :))
Cô t cho như thế mà...