(1+1/3+1/5+1/7+...+1/99) : (1/1.99+1/3.97)+...+1/99.1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
Ta thấy:
1/1 + 1/99 = (99+1)/(1.99)=100/(1.99)
1/3 + 1/97 = (97+3)/(3.97)=100/(3.97)
1/5 + 1/95 = (95+5)/(5.95)=100/(3.97)
…
1/97 + 1/3 = (3+97)/(97.3)=100/(97.3)
1/99 + 1/1 = (1+99)/(99.1)=100/(99.1)
=>
1/(1.99)=(1/1+1/99)/100
1/(3.97)=(1/3+1/97)/100
…
1/(99.1)=(1/99+1/1)/100
------------------------------ cộng 2 vế của các đẳng thức trên. Ta được đẳng thức:
1/(1.99) + 1/(3.97)+ 1/(5.95) +...+ 1/(97.3) + 1/(99.1 )
=[(1/1+1/99)+(1/3+1/99)+…+(1/99+1/1)]/1...
=2(1+1/3+1/5+1/7…+1/99]/100
=(1+1/3+1/5+1/7…+1/99]/50
Vậy:
A=(1+1/3+1/5+1/7+...+1/97+1/99) / [ 1/(1.99) + 1/(3.97)+ 1/(5.95) +...+ 1/(97.3) + 1/(99.1 ) ]
A=(1+1/3+1/5+1/7+...+1/97+1/99)/[(1+1/3...
A=50.
Đặt \(B=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\)
\(=\left(1+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+\left(\frac{1}{5}+\frac{1}{95}\right)+...+\left(\frac{1}{49}+\frac{1}{51}\right)\)
\(=\frac{100}{99}+\frac{100}{3\times97}+\frac{100}{5\times95}+...+\frac{100}{49\times51}\)
\(=100\left(\frac{1}{99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{49\times51}\right)\)
Đặt \(C=\frac{1}{1\times99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{97\times3}+\frac{1}{99\times1}\)
\(=2\left(\frac{1}{99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{49\times51}\right)\)
\(A=\frac{B}{6}=\frac{100}{2}=50\)
Vậy \(A=50\)