K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2023

Câu 5:

\(\dfrac{13}{6}+x=-2,4\)

\(\Rightarrow\dfrac{13}{6}+x=-\dfrac{12}{5}\)

\(\Rightarrow x=-\dfrac{12}{5}-\dfrac{13}{6}\)

\(\Rightarrow x=-\dfrac{137}{30}\) 

Câu 6:

\(3,7-x=\dfrac{7}{10}\)

\(\Rightarrow\dfrac{37}{10}-x=\dfrac{7}{10}\)

\(\Rightarrow x=\dfrac{37}{10}-\dfrac{7}{10}\)

\(\Rightarrow x=3\)

Câu 7:

\(\dfrac{3}{7}+x=\dfrac{2}{14}\)

\(\Rightarrow\dfrac{3}{7}+x=\dfrac{1}{7}\)

\(\Rightarrow x=\dfrac{1}{7}-\dfrac{3}{7}\)

\(\Rightarrow x=-\dfrac{2}{7}\)

Câu 8:

\(\dfrac{3}{7}\cdot y=\dfrac{-2}{5}\)

\(\Rightarrow y=\dfrac{-2}{5}:\dfrac{3}{7}\)

\(\Rightarrow y=\dfrac{-2}{5}\cdot\dfrac{7}{3}\)

\(\Rightarrow y=-\dfrac{14}{15}\)

20 tháng 10 2021

1.A   2.B   3.C

20 tháng 10 2021

1.A    2.B    3.D

1) ĐKXĐ: \(x\ge0\)

2) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)

3) ĐKXĐ: \(x\ge4\)

4) ĐKXĐ: \(x>16\)

5) ĐKXĐ: \(\left[{}\begin{matrix}x\le-2\\x\ge0\end{matrix}\right.\)

6) ĐKXĐ: \(\left[{}\begin{matrix}x\le-1\\x\ge4\end{matrix}\right.\)

7) ĐKXĐ: \(\left[{}\begin{matrix}1\le x\\x< 3\end{matrix}\right.\)

8) ĐKXĐ: \(\left[{}\begin{matrix}x\le-2\\x>3\end{matrix}\right.\)

9) ĐKXĐ: \(x\in R\)

10) ĐKXĐ: \(x\in R\)

11) ĐKXĐ: \(x\in R\)

12) ĐKXĐ: \(x\in R\)

13) ĐKXĐ: \(x\in R\)

14) ĐKXĐ: \(x\in R\)

15) ĐKXĐ: \(x\in R\)

16) ĐKXĐ: \(x\ne-\dfrac{1}{2}\)

17) ĐKXĐ: \(x\ge7\)

18) ĐKXĐ: \(x\ge-5\)

17 tháng 11 2021

\(1,\Leftrightarrow x^2-8x+16-x^2+x+12=7\\ \Leftrightarrow-7x=-21\\ \Leftrightarrow x=3\\ 2,\Leftrightarrow\left(x-4\right)^2-\left(x-4\right)=0\\ \Leftrightarrow\left(x-4\right)\left(x-5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)

10 tháng 11 2021

a) \(\Leftrightarrow x^2+10x+25-x^2+8x-15=-8\\ \Leftrightarrow18x=-18\\ \Leftrightarrow x=-1\)

b) \(\Leftrightarrow\left(2x+1\right)^2-3\left(2x+1\right)=0\\ \Leftrightarrow\left(2x+1\right)\left(2x+1-3\right)=0\\ \Leftrightarrow\left(2x+1\right)\left(2x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=1\end{matrix}\right.\)

26 tháng 9 2021

\(1,\\ a,\dfrac{8x}{2xy}=\dfrac{4x}{y}\\ b,\dfrac{2xy}{6y}=\dfrac{x}{3}\\ c,\dfrac{3\left(x+2\right)}{2x}=\dfrac{6\left(x+2\right)}{4x}\\ d,\dfrac{4\left(x-2\right)}{3\left(x+1\right)}=\dfrac{8\left(x-2\right)x}{6\left(x+1\right)x}\\ 2,\\ \dfrac{x^2+3x+2}{x^2+x}=\dfrac{x^2+x+2x+2}{x\left(x+1\right)}=\dfrac{\left(x+1\right)\left(x+2\right)}{x\left(x+1\right)}=\dfrac{x+2}{x}\\ 3,\\ \dfrac{x^2-3x}{x^2-9}=\dfrac{x}{x+3}\)

Bài 3: 

Ta có: \(x^2-2x+4=\left(x-1\right)^2+3\ge3\forall x\)

\(\Leftrightarrow P=\dfrac{15}{x^2-2x+4}=\dfrac{15}{\left(x-1\right)^2+3}\le5\forall x\)

Dấu '=' xảy ra khi x=1

29 tháng 12 2023

\(a^3+b^3+c^3=3abc\)

=>\(\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

=>\(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)

=>\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)

=>\(a^2+b^2+c^2-ab-ac-bc=0\)

=>\(2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)

=>\(\left(a^2-2ba+b^2\right)+\left(b^2-2cb+c^2\right)+\left(a^2-2ac+c^2\right)=0\)

=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

=>\(\left\{{}\begin{matrix}a-b=0\\b-c=0\\a-c=0\end{matrix}\right.\Leftrightarrow a=b=c\)

\(A=\dfrac{a^{2023}}{b^{2023}}+\dfrac{b^{2023}}{c^{2023}}+\dfrac{c^{2023}}{a^{2023}}\)

\(=\dfrac{a^{2023}}{a^{2023}}+\dfrac{b^{2023}}{b^{2023}}+\dfrac{c^{2023}}{c^{2023}}\)

=1+1+1

=3

17 tháng 11 2021

\(1,=3ab\left(1-2a+b\right)\\ 2,=\left(x-y\right)\left(x+y\right)-7\left(x+y\right)=\left(x+y\right)\left(x-y-7\right)\\ 3,=\left(a-5\right)\left(5a-2\right)\\ 4,=5x\left(x-3\right)-\left(x-3\right)\left(x+3\right)=\left(x-3\right)\left(4x-3\right)\\ 5,=9a^2-\left(b-2\right)^2=\left(3a-b+2\right)\left(3a+b-2\right)\\ 6,=2x^2-4x+3x-6=\left(x-2\right)\left(2x+3\right)\\ 7,=3x^2\left(2x-5\right)\\ 8,=\left(3x-5\right)\left(3x+5\right)\\ 9,=4x^2\left(x-y\right)-x\left(x-y\right)=x\left(4x-1\right)\left(x-y\right)\)