Tìm x, biết:
-2x + 3.(x - 2) + 9 = 12 + 4x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)(x+2).(x+3)-(x-2).(x+5)=10
( x^2 +3x+2x+6)-(x^2 +5x-2x-10)=10
x^2 +3x+2x+6-x^2 -5x+2x+10-10=0
2x+6=0
2x=-6
x=-3
a: \(B=\dfrac{3x\left(2x-3\right)-4\left(2x+3\right)-4x^2+23x+12}{\left(2x-3\right)\left(2x+3\right)}\cdot\dfrac{2x+3}{x+3}\)
\(=\dfrac{6x^2-9x-8x-12-4x^2+23x+12}{2x-3}\cdot\dfrac{1}{x+3}\)
\(=\dfrac{2x^2+6x}{\left(2x-3\right)}\cdot\dfrac{1}{x+3}=\dfrac{2x}{2x-3}\)
b: 2x^2+7x+3=0
=>(2x+3)(x+2)=0
=>x=-3/2(loại) hoặc x=-2(nhận)
Khi x=-2 thì \(A=\dfrac{2\cdot\left(-2\right)}{-2-3}=\dfrac{-4}{-7}=\dfrac{4}{7}\)
d: |B|<1
=>B>-1 và B<1
=>B+1>0 và B-1<0
=>\(\left\{{}\begin{matrix}\dfrac{2x+2x-3}{2x-3}>0\\\dfrac{2x-2x+3}{2x-3}< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-3< 0\\\dfrac{4x-3}{2x-3}>0\end{matrix}\right.\Leftrightarrow x< \dfrac{3}{4}\)
a, \(x^2-6x+9=4< =>\left(x-3\right)^2=4< =>\orbr{\begin{cases}x-3=2\\x-3=-2\end{cases}}\)
\(< =>\orbr{\begin{cases}x=5\\x=1\end{cases}}\)
b,\(x^2\left(x-3\right)-4\left(x-3\right)=0< =>\left(x-2\right)\left(x+2\right)\left(x-3\right)=0\)
\(< =>\orbr{\begin{cases}x=2\\x=-2\end{cases}orx=3}\)
c nhường mấy bn khácccc
a) x^2-6x+9=4.
x=1, x=5
b) x^2(x-3)-(4X-12)=0
x=-2, x=2, x=3
c) (2x+3)^2-4(x+2)^2=12
x=-19/4
Noob ơi, bạn phải đưa vào máy tính ý solve cái là ra x luôn, chỉ tội là đợi hơi lâu
a, 4.(18 - 5x) - 12(3x - 7) = 15(2x - 16) - 6(x + 14)
=> 72 - 20x - 36x + 84 = 30x - 240 - 6x - 84
=> (72 + 84) + (-20x - 36x) = (30x - 6x) + (-240 - 84)
=> 156 - 56x = 24x - 324
=> 24x + 56x = 324 + 156
=> 80x = 480
=> x = 480 : 80 = 6
Vậy x = 6
a) Ta có: \(3-\left(17-x\right)=-12\)
\(\Leftrightarrow3-17+x+12=0\)
\(\Leftrightarrow x-2=0\)
hay x=2
Vậy: x=2
b) Ta có: \(\left(2x+4\right)\left(10-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+4=0\\10-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-4\\2x=10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=5\end{matrix}\right.\)
Vậy: \(x\in\left\{-2;5\right\}\)c) Ta có: \(\left|x-9\right|=-2+17\)
\(\Leftrightarrow\left|x-9\right|=15\)
\(\Leftrightarrow\left[{}\begin{matrix}x-9=15\\x-9=-15\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=24\\x=-6\end{matrix}\right.\)
Vậy: \(x\in\left\{24;-6\right\}\)
`@` `\text {Ans}`
`\downarrow`
`a)`
`3x(4x-1) - 2x(6x-3) = 30`
`=> 12x^2 - 3x - 12x^2 + 6x = 30`
`=> 3x = 30`
`=> x = 30 \div 3`
`=> x=10`
Vậy, `x=10`
`b)`
`2x(3-2x) + 2x(2x-1) = 15`
`=> 6x- 4x^2 + 4x^2 - 2x = 15`
`=> 4x = 15`
`=> x = 15/4`
Vậy, `x=15/4`
`c)`
`(5x-2)(4x-1) + (10x+3)(2x-1) = 1`
`=> 5x(4x-1) - 2(4x-1) + 10x(2x-1) + 3(2x-1)=1`
`=> 20x^2-5x - 8x + 2 + 20x^2 - 10x +6x - 3 =1`
`=> 40x^2 -17x - 1 = 1`
`d)`
`(x+2)(x+2)-(x-3)(x+1)=9`
`=> x^2 + 2x + 2x + 4 - x^2 - x + 3x + 3=9`
`=> 6x + 7 =9`
`=> 6x = 2`
`=> x=2/6 =1/3`
Vậy, `x=1/3`
`e)`
`(4x+1)(6x-3) = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + 24x^2 +11x - 18`
`=> 24x^2 - 6x - 3 = 24x^2 + 18x -11`
`=> 24x^2 - 6x - 3 - 24x^2 + 18x + 11 = 0`
`=> 12x +8 = 0`
`=> 12x = -8`
`=> x= -8/12 = -2/3`
Vậy, `x=-2/3`
`g)`
`(10x+2)(4x- 1)- (8x -3)(5x+2) =14`
`=> 40x^2 - 10x + 8x - 2 - 40x^2 - 16x + 15x + 6 = 14`
`=> -3x + 4 =14`
`=> -3x = 10`
`=> x= - 10/3`
Vậy, `x=-10/3`
+) Ta có: 9 = 1 . 9 = 9.1 = 3.3
Lập bảng :
4x +1 | 1 | 9 | 3 |
y - 3 | 9 | 1 | 3 |
x | 0 | 2 | 1/2 |
y | 12 | 4 | 9 |
Vì x thuộc n nên ...
+) Ta có : 25 = 1.25 = 25.1 = 5.5
Lập bảng:
2x + 3 | 1 | 25 | 5 |
y + 4 | 25 | 1 | 5 |
x | -1 | 11 | 1 |
y | 21 | -3 | 1 |
vì x thuộc N nên...
-2x +3(x-2) +9= 12x+4
= -2x+3x -6 +9 = 12+4x
= x+3= 12+4x
= -3x=9
=) x= -3