\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và x2+y2+z2+29
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Áp dụng bất đẳng thức Cauchy - Schwarz dưới dạng Engel ta có :
\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\)
Dấu "=" xảy ra <=> \(x=y=z=1\)
Vậy ............

Ta có 1 + x2 = xy + yz + xz + x2 = (xy + x2) + (yz + xz) = (x + y)(x + z)
=> \(1x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{\left(1+x^2\right)}}=\:x\sqrt{\frac{\left(y+x\right)\left(y+z\right)\left(z+x\right)\left(z+y\right)}{\left(x+y\right)\left(x+z\right)}}=\:x\left|y+z\right|\)
Tương tự như vậy thì ta có
A = xy + xz + yx + yz + zx + zy = 2


a: Ta có: \(\left(x+y\right)^2\)
\(=x^2+2xy+y^2\)
\(\Leftrightarrow x^2+y^2=\dfrac{\left(x+y\right)^2}{2xy}\ge\dfrac{\left(x+y\right)^2}{2}\forall x,y>0\)
= 29 hay + 29 vậy???
uzumaki naruto mắt lé hay sao đấy