tìm min F = \(\frac{2}{ab}\)+\(\frac{1}{a^2+b^2}\)+\(\frac{a^4+b^4}{2}\) với a,b>0 và a+b=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(x=\frac{a}{b}+\frac{b}{a}\Rightarrow\frac{a^2}{b^2}+\frac{b^2}{a^2}=x^2-2\)
Xét mẫu thức : \(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\left(\frac{a}{b}+\frac{b}{a}\right)=x^2-x-2=\left(x+1\right)\left(x-2\right)\)
Thay \(x=\frac{a}{b}+\frac{b}{a}\) được mẫu thức : \(\left(\frac{a}{b}+\frac{b}{a}+1\right)\left(\frac{a}{b}+\frac{b}{a}-2\right)=\left(\frac{a}{b}+\frac{b}{a}+1\right).\frac{\left(a-b\right)^2}{ab}\)
Ta có : \(P=\frac{\left(\frac{a}{b}+\frac{b}{a}+1\right)\left(\frac{1}{a}-\frac{1}{b}\right)^2}{\frac{a^2}{b^2}+\frac{b^2}{a^2}-\left(\frac{a}{b}+\frac{b}{a}\right)}=\frac{\left(\frac{a}{b}+\frac{b}{a}+1\right).\frac{\left(a-b\right)^2}{a^2b^2}}{\left(\frac{a}{b}+\frac{b}{a}+1\right).\frac{\left(a-b\right)^2}{ab}}\)
\(=\frac{\left(a-b\right)^2}{a^2b^2}.\frac{ab}{\left(a-b\right)^2}=\frac{1}{ab}\) (đpcm)
b) Áp dụng bđt Cauchy :
\(1=4a+b+\sqrt{ab}\ge2\sqrt{4a.b}+\sqrt{ab}\)
\(\Rightarrow5\sqrt{ab}\le1\Rightarrow ab\le\frac{1}{25}\)
\(\Rightarrow P=\frac{1}{ab}\ge25\) . Dấu "=" xảy ra khi \(\begin{cases}4a+b+\sqrt{ab}=1\\4a=b\end{cases}\)
\(\Leftrightarrow\begin{cases}a=\frac{1}{10}\\b=\frac{2}{5}\end{cases}\)
Vậy P đạt giá trị nhỏ nhất bằng 25 tại \(\left(a;b\right)=\left(\frac{1}{10};\frac{2}{5}\right)\)
pn ơi , bđt cauchy : \(a+b\ge2\sqrt{ab}\)
s lại là \(2\sqrt{4a.b}+\sqrt{ab}\)
bài này easy thôi:
Áp dụng BĐT schwarz ta có:
\(VT=\frac{a^4}{a\left(a^2+ab+b^2\right)}+\frac{b^4}{b\left(b^2+bc+c^2\right)}+\frac{c^4}{c\left(c^2+ac+a^2\right)}\)
\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a\left(a^2+ab+b^2\right)+b\left(b^2+bc+c^2\right)+c\left(c^2+ac+a^2\right)}.\)
Mặt khác \(a\left(a^2+ab+b^2\right)+b\left(b^2+bc+c^2\right)+c\left(c^2+ac+a^2\right)\)\(=\left(a+b+c\right)\left(a^2+b^2+c^2\right).\)
nên ta có:\(VT\ge\frac{a^2+b^2+c^2}{a+b+c}=a^2+b^2+c^2.\)
Mà ta có BĐT cơ bản là:\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2.\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge1\Leftrightarrow a^2+b^2+c^2\ge\frac{1}{3}.\)
Do đó:\(VT\ge a^2+b^2+c^2\ge\frac{1}{3}.\)
Vậy Min là \(\frac{1}{3}.\)Dấu = xảy ra khi \(a=b=c=\frac{1}{3}.\)
So easy =))
Áp dụng BĐT Cauchy-Schwarz và BĐT AM-GM ta có:
\(F=\frac{4}{2ab}+\frac{1}{a^2+b^2}+\frac{a^4+b^4}{2}\)
\(\ge\frac{\left(1+2\right)^2}{2ab+a^2+b^2}+\frac{\frac{\left(a^2+b^2\right)^2}{2}}{2}\)
\(\ge\frac{\left(1+2\right)^2}{\left(a+b\right)^2}+\frac{\frac{\frac{\left(\left(a+b\right)^2\right)^2}{2}}{2}}{2}\)
\(=\frac{9}{1}+\frac{\frac{\frac{1}{2}}{2}}{2}=9+\frac{1}{8}=\frac{73}{8}\)
Xảy ra khi \(a=b=\frac{1}{2}\)