K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2023

2009²⁰²³ = 2009²⁰²².2009

Ta có:

2009 ≡ 9 (mod 10)

2009² ≡ 1 (mod 10)

2009²⁰²²  ≡ (2009²)¹⁰¹¹ (mod 10) ≡ 1¹⁰¹¹(mod 10) ≡ 1 (mod 10)

2009²⁰²³ ≡ 2009²⁰²².2009 (mod 10) ≡ 1.9 (mod 10) ≡ 9 (mod 10)

Vậy chữ số tận cùng của 2009²⁰²³ là 9

5 tháng 9 2023

1) \(S=2.2.2..2\left(2023.số.2\right)\)

\(\Rightarrow S=2^{2023}=\left(2^{20}\right)^{101}.2^3=\overline{....6}.8=\overline{.....8}\)

2) \(S=3.13.23...2023\)

Từ \(3;13;23;...2023\) có \(\left[\left(2023-3\right):10+1\right]=203\left(số.hạng\right)\)

\(\) \(\Rightarrow S\) có số tận cùng là \(1.3^3=27\left(3^{203}=\left(3^{20}\right)^{10}.3^3\right)\)

\(\Rightarrow S=\overline{.....7}\)

3) \(S=4.4.4...4\left(2023.số.4\right)\)

\(\Rightarrow S=4^{2023}=\overline{.....4}\)

4) \(S=7.17.27.....2017\)

Từ \(7;17;27;...2017\) có \(\left[\left(2017-7\right):10+1\right]=202\left(số.hạng\right)\)

\(\Rightarrow S\) có tận cùng là \(1.7^2=49\left(7^{202}=7^{4.50}.7^2\right)\)

\(\Rightarrow S=\overline{.....9}\)

6 tháng 9 2023

Bài 1:

S = 2 x 2 x 2 x 2 x 2 x...x 2 (2023 chữ số 2)

Nhóm 4 thừa số 2 vào một nhóm thì vì:

2023 : 4 = 505 dư 3 

Vậy

S = (2x2x2x2) x...x (2 x 2 x 2 x 2) x 2 x 2 x 2 có 503 nhóm (2x2x2x2)

S = \(\overline{..6}\) x ...x \(\overline{..6}\) x 8

S = \(\overline{..6}\) x 8

S = \(\overline{..8}\)

                

       

6 tháng 9 2023

             Bài 2:

S = 3 x 13 x 23 x...x 2023

Xét dãy số: 3; 13; 23;..;2023

Dãy số trên là dãy số cách đều với khoảng cách là: 13 - 3 = 10

Số số hạng của dãy số trên là: (2023 - 3):10 + 1 = 203 (số hạng)

 Vậy chữ số tận cùng của S bằng chữ số tận cùng của A.

  Với A = 3 x 3 x 3 x...x 3 (203 thừa số 3)

  Nhóm 4 thừa số 3 thành 1 nhóm, vì 203 : 4 = 50 (dư 3)

  A = (3 x 3 x 3 x 3)x...x(3x3x3x3)x3x3x3 có 50 nhóm (3x3x3x3)

   A = \(\overline{..1}\) x...x \(\overline{..1}\) x 27

   A = \(\overline{..7}\)

   

 

 

 

29 tháng 11 2023

A =   \(\dfrac{3^{2023}-1}{2}\)

A =   \(\dfrac{\left(3^4\right)^{505}.3^3-1}{2}\)

A = \(\dfrac{\left(\overline{...1}\right)^{505}.27-1}{2}\)

A = \(\dfrac{\overline{..7}-1}{2}\)

A = \(\dfrac{\overline{..6}}{2}\) 

A = \(\overline{..3}\) ; \(\overline{..8}\)  (1)

Vì 3 là số lẻ nên 32023 là số lẻ ⇒ 32023 -  1 là số chẵn  (2)

Kết hợp (1) và (2) ta có: A = \(\overline{..8}\)

Kết luận chữ số tận cùng của A là 8 

29 tháng 11 2023

A = \(\dfrac{3^{2023}-1}{2}\)

A = \(\dfrac{\left(3^4\right)^{505}.3^3-1}{2}\)

A = \(\dfrac{\overline{..1}^{505}.27-1}{2}\)

A = \(\dfrac{\overline{..7}-1}{2}\)

A = \(\dfrac{\overline{..6}}{2}\)

A = \(\overline{..3};\overline{..8}\) (1)

Vì 3 là số lẻ nên 32023 là số lẻ ⇒ 32023  - 1 là số chẵn (2) 

Kết hợp (1) và (2) ta có: A = \(\overline{..8}\)

Vậy chữ số tận cùng của : \(\dfrac{3^{2023}-1}{2}\) là 8 

13 tháng 10 2023

khó quá bạn

14 tháng 10 2023

*) 157²⁴⁰ = [(157⁴)⁵]¹²

157⁴ ≡ 1 (mod 10)

(157⁴)⁵ ≡ 1⁵ (mod 10) ≡ 1 (mod 10)

157²⁴⁰ ≡ [(157⁴)⁵]¹² (mod 10) ≡ 1¹² (mod 10) ≡ 1 (mod 10)

Vậy chữ số tận cùng của 157²⁴⁰ là 1

*) 268²⁶⁸ = [(268⁴)⁵]¹³.268⁸

268⁴ ≡ 6 (mod 10)

(268⁴)⁵ ≡ 6⁵ (mod 10) ≡ 6 (mod 10)

[(268⁴)⁵]¹³ ≡ 6¹³ (mod 10) ≡ 6⁵.6⁸ (mod 10) ≡ 6.6 (mod 10) ≡ 6 (mod 10)

268⁸ ≡ 268⁴ . 268⁴ (mod 10) ≡ 6 . 6 (mod 10) ≡ 6 (mod 10)

268²⁶⁸ ≡ [(268⁴)⁵]¹³.268⁸ (mod 10) ≡ 6.6 (mod 10) ≡ 6 (mod 10)

Vậy chữ số tận cùng của 268²⁶⁸ là 6

*) 2023²⁰²² = 2023²⁰⁰⁰.2023²²

2023³ ≡ 7 (mod 10)

(2023³)⁵ ≡ 7⁵ (mod 10) ≡ 7 (mod 10)

2023¹⁶ ≡ (2023³)⁵ . 2023 (mod 10) ≡ 7.2023 (mod 10) ≡ 1 (mod 10)

2023²⁰⁰⁰ ≡ (2023¹⁶)²⁵⁵ (mod 10) ≡ 1¹²⁵ (mod 10) ≡ 1 (mod 10)

(2023³)⁷ ≡ 7⁷ (mod 10) ≡ 3 (mod 10)

2023²² ≡ (2023³)⁷.2023 (mod 10) ≡ 3.3 (mod 10) ≡ 9 (mod 10)

2023²⁰²² ≡ 2023²⁰⁰⁰.2023²⁰²² (mod 10) ≡ 1.9 (mod 10) ≡ 9 (mod 10)

Vậy chữ số tận cùng của 2023²⁰²² là 9

Ta có: \(2^{2023}=2^{2020+3}=2^{2020}.2^3\)

\(=\left(2^4\right)^{505}.2^3=16^{505}.8\)

\(=\left(....6\right).8\)

Vậy chữ số tận cùng sẽ luôn là 8

21 tháng 8 2023

Ta có:

\(2^{2023}\)

\(=2^{2020+3}\)

\(=\left(2^4\right)^{505}.2^3\)

\(=16^{505}.8\)

\(=\left(...6\right)^8\)

\(=8\)

Vậy tận cùng của \(2^{2023}là8\)

1 tháng 12 2023

Chữ số tận cùng là 8

3 tháng 5 2024

\(\dfrac{3^{2023}-1}{2}\) = \(\dfrac{\overline{...7}-1}{2}\) = \(\dfrac{\overline{...6}}{2}\) = \(\left[{}\begin{matrix}\overline{...3}\\\overline{...8}\end{matrix}\right.\)
Vậy \(\dfrac{3^{2023}-1}{2}\) \(\in\) { \(\overline{...3}\) ; \(\overline{...8}\) }

19 tháng 12 2016

vì các chữ số sau là 3 nên số tận cùng là

3x3=9

đáp số 9

19 tháng 12 2016

la 9 h cho minh nha

knbb ten