K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2017

a, 1+2+3+...+m=45

=> [(m-1):1+1]x(m+1):2=45

=> mx(m+)=45x2

=> mx(m+1)=90

=> mx(m+1)=9x(9+1)

=> m=9

b, 2+4+..+2.n=110

=> 1.2+2.2+...+2.n=110

=> 2.(1+2+3+...+n)=110

=> 1+2+3+..+n=110:2

=> 1+2+..+n=55

=> [(n-1):1+1].(n+1):2=55

=> n.(n+1)=55.2

=> n.(n+1)=110

=> n.(n+1)=10.(10+10

=> n=10

30 tháng 7 2017

Đáp án của mik là:n=10

16 tháng 11 2016

số hạng thứ n là 20 dễ mà cái này mình gặp nhiều rồi

16 tháng 11 2016

số số hạng từ 2 đến n là : (n - 2) : 2 +1 = n : 2 - 2: 2 +1 = n : 2 (Các số chẵn nên ta chia 2 rồi mới cộng 1 được)

Ta có: 2 + n = 4 + (n -2 ) = 6 + (n - 4)=... ( tổng số đầu với tổng số cuối bằng tổng số đầu trừ đi khoảng cách cộng số cuối trừ đi khoảng cách, áp dụng trong tất cả các dãy số có quy luật nhất định về khoảng cách)

ta có tất cả các cặp là: ( n : 2) : 2 = n :4 ( có n : 2 số hạng mà cứ 2 số được 1 cặp nên ta chia 2, chia 2 chia 2 là chia 4)

Tổng của 2 + 4 +...+ n = (n : 4)(n + 2) =110 (Lấy số cặp nhân với tổng của 1 số cặp)

\(\frac{n}{4}\)(n + 2) = \(\frac{n^2+2n}{4}\)= 110  (Bạn tự hiểu)

n2 + 2n = 110 . 4 = 440            (( n2 + 2n) : 4 = 110 - Tìm số bị chia lấy thương nhân với số chia)

n(n + 2 ) =440                         (Tích hai số chẵn liên tiếp)

Suy ra: n =20

P/S: Mik đã là học sinh lớp 8 nên có thể lẫn lộn kiến thức, có nghĩa là mình có kiến thức nhưng ko biết nó thuộc lớp mấy, vì thể mong bạn thông cảm vì mình có thể giải bài trên bằng nhiều phương pháp bạn chưa học. Gửi tin nhắn góp ý cho mình nhé. Lần sau nếu cần mình sẽ giải cho bạn thêm nhiều bài khó nữa nhé.

12 tháng 8 2015

mk thích cái hình này

avt261737_60by60.jpg
19 tháng 4 2019

để a có giá trị nguyên khi n-2 chia hết n+2 

Ta có: n-2 chia hết cho n+2 => n+2-4chia hết cho n+2

Vì n+2 chia hết cho n+2 => 4 chia hết cho n+2 => n+4 thuộc Ư4

Ư4 = {+-1,+-2,+-4}

n+4-112-24-4
n-5-3-2(loại)-60-8

=> n thuộc { -5,-3,-6,0,-8} thì a có giá trị nguyên 

B=\(\frac{2n+1}{n+1}\)

để B có giá trị nguyên khi 2n+1 chia hết cho n+1

Ta có: 2n+1 chia hết cho n+1 => 2n+2-1chia hết cho n+1

Vì 2n+2chia hết cho n+1 => 1 chia hết cho n+1

TH1: n+1=1 => n=0

TH2: n+1=-1 => n=-2

a, Để    \(\frac{n-2}{n+2}\in Z\Rightarrow n-2⋮n+2\)

\(\Rightarrow n+2-4⋮n+2\)

\(\Rightarrow4⋮n+2\)

\(n+2\inƯ\left(4\right)\)

\(\Rightarrow n+2\in\left\{\pm1,\pm2,\pm4\right\}\)

\(\Rightarrow n\in\left\{-3,-1,-4,0,2,-6\right\}\)

22 tháng 10 2023

\(3n+14⋮n+2\)

=>\(3n+6+8⋮n+2\)

=>\(8⋮n+2\)

=>\(n+2\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)

=>\(n\in\left\{-1;-3;0;-4;2;-6;6;-10\right\}\)

mà n>=0

nên \(n\in\left\{0;2;6\right\}\)

Bài 1:

a) Ta có: \(VT=\frac{-u^2+3u-2}{\left(u+2\right)\left(u-1\right)}\)

\(=\frac{-\left(u^2-3u+2\right)}{\left(u+2\right)\left(u-1\right)}\)

\(=\frac{-\left(n^2-u-2u+2\right)}{\left(u+2\right)\left(u-1\right)}\)

\(=\frac{-\left[u\left(u-1\right)-2\left(u-1\right)\right]}{\left(u+2\right)\left(u-1\right)}\)

\(=\frac{-\left(u-1\right)\left(u-2\right)}{\left(u+2\right)\left(u-1\right)}\)

\(=\frac{2-u}{u+2}\)(1)

Ta có: \(VP=\frac{u^2-4u+4}{4-u^2}\)

\(=\frac{\left(u-2\right)^2}{-\left(u-2\right)\left(u+2\right)}\)

\(=\frac{-\left(u-2\right)}{u+2}\)

\(=\frac{2-u}{u+2}\)(2)

Từ (1) và (2) suy ra \(\frac{-u^2+3u-2}{\left(u+2\right)\left(u-1\right)}=\frac{u^2-4u+4}{4-u^2}\)

b) Ta có: \(VT=\frac{v^3+27}{v^2-3v+9}\)

\(=\frac{\left(v+3\right)\left(v^3-3u+9\right)}{v^2-3u+9}\)

\(=v+3=VP\)(đpcm)

Bài 2:

a) Ta có: \(\frac{3x^2-2x-5}{M}=\frac{3x-5}{2x-3}\)

\(\Leftrightarrow\frac{3x^2-5x+3x-5}{M}=\frac{3x-5}{2x-3}\)

\(\Leftrightarrow\frac{x\left(3x-5\right)+\left(3x-5\right)}{M}=\frac{3x-5}{2x-3}\)

\(\Leftrightarrow\frac{\left(3x-5\right)\left(x+1\right)}{M}=\frac{3x-5}{2x-3}\)

\(\Leftrightarrow M=\frac{\left(3x-5\right)\left(x+1\right)\left(2x-3\right)}{3x-5}\)

\(\Leftrightarrow M=\left(x+1\right)\left(2x-3\right)\)

\(\Leftrightarrow M=2x^2-3x+2x-3\)

hay \(M=2x^2-x-3\)

Vậy: \(M=2x^2-x-3\)

b) Ta có: \(\frac{2x^2+3x-2}{x^2-4}=\frac{M}{x^2-4x+4}\)

\(\Leftrightarrow\frac{2x^2+4x-x-2}{\left(x-2\right)\left(x+2\right)}=\frac{M}{\left(x-2\right)^2}\)

\(\Leftrightarrow\frac{2x\left(x+2\right)-\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{M}{\left(x-2\right)^2}\)

\(\Leftrightarrow\frac{\left(x+2\right)\left(2x-1\right)}{\left(x+2\right)\left(x-2\right)}=\frac{M}{\left(x-2\right)^2}\)

\(\Leftrightarrow\frac{M}{\left(x-2\right)^2}=\frac{2x-1}{x-2}\)

\(\Leftrightarrow M=\frac{\left(2x-1\right)\left(x-2\right)^2}{\left(x-2\right)}\)

\(\Leftrightarrow M=\left(2x-1\right)\left(x-2\right)\)

\(\Leftrightarrow M=2x^2-4x-x+2\)

hay \(M=2x^2-5x+2\)

Vậy: \(M=2x^2-5x+2\)

Bài 3:

a) Ta có: \(\frac{x+1}{N}=\frac{x^2-2x+4}{x^3+8}\)

\(\Leftrightarrow\frac{x+1}{N}=\frac{x^2-2x+4}{\left(x+2\right)\left(x^2-2x+4\right)}\)

\(\Leftrightarrow\frac{x+1}{N}=\frac{1}{x+2}\)

\(\Leftrightarrow N=\left(x+1\right)\left(x+2\right)\)

hay \(N=x^2+3x+2\)

Vậy: \(N=x^2+3x+2\)

n) Ta có: \(\frac{\left(x-3\right)\cdot N}{3+x}=\frac{2x^3-8x^2-6x+36}{2+x}\)

\(\Leftrightarrow\frac{N\cdot\left(x-3\right)}{x+3}=\frac{2x^3+4x^2-12x^2-24x+18x+36}{x+2}\)

\(\Leftrightarrow\frac{N\cdot\left(x-3\right)}{\left(x+3\right)}=\frac{2x^2\left(x+2\right)-12x\left(x+2\right)+18\left(x+2\right)}{x+2}\)

\(\Leftrightarrow\frac{N\cdot\left(x-3\right)}{x+3}=\frac{\left(x+2\right)\left(2x^2-12x+18\right)}{x+2}\)

\(\Leftrightarrow\frac{N\cdot\left(x-3\right)}{x+3}=2x^2-12x+18\)

\(\Leftrightarrow\frac{N\cdot\left(x-3\right)}{x+3}=2x^2-6x-6x+18=2x\left(x-3\right)-6\left(x-3\right)=2\cdot\left(x-3\right)^2\)

\(\Leftrightarrow N\cdot\left(x-3\right)=\frac{2\left(x-3\right)^2}{x+3}\)

\(\Leftrightarrow N=\frac{2\left(x-3\right)^2}{x+3}:\left(x-3\right)=\frac{2\left(x-3\right)^2}{\left(x+3\right)\left(x-3\right)}\)

\(\Leftrightarrow N=\frac{2\left(x-3\right)}{x+3}\)

hay \(N=\frac{2x-6}{x+3}\)

Vậy: \(N=\frac{2x-6}{x+3}\)

22 tháng 12 2015

a)3n+2 chia hết cho n-1

3n-3+5 chia hết cho n-1

3(n-1)+5 chia hết cho n-1

=>5 chia hết cho n-1 hay n-1EƯ(5)={1;-1;5;-5}

=>nE{2;0;6;-4}

b)n2+5 chia hết cho n+1

n2+n-n-1+6 chia hết cho n+1

n(n+1)-(n+1)+6 chia hết cho n+1

(n-1)(n+1)+6 chia hết cho n+1

=>6 chia hết cho n+1 hay n+1EƯ(6)={1;-1;2;-2;3;-3;6;-6}

=>nE{0;-2;1;-3;2;-4;5;-7}

Bài 4:

Vì P là số nguyên tố lớn hơn 3 nên P là số lẻ

hay P-1 và P+1 là các số chẵn

\(\Leftrightarrow\left(P-1\right)\left(P+1\right)⋮8\)

Vì P là số nguyên tố lớn hơn 3 nên P=3k+1(k∈N) hoặc P=3k+2(k∈N)

Thay P=3k+1 vào (P-1)(P+1), ta được:

\(\left(3k-1+1\right)\left(3k+1+1\right)=3k\cdot\left(3k+2\right)⋮3\)(1)

Thay P=3k+2 vào (P-1)(P+1), ta được:

\(\left(3k+2-1\right)\left(3k+2+1\right)=\left(3k+1\right)\left(3k+3\right)⋮3\)(2)

Từ (1) và (2) suy ra \(\left(P-1\right)\left(P+1\right)⋮3\)

mà \(\left(P-1\right)\left(P+1\right)⋮8\)

và (3;8)=1

nên \(\left(P-1\right)\left(P+1\right)⋮24\)(đpcm)

25 tháng 1 2021

thank you bn nha

 

8 tháng 11 2019

1

18 tháng 11 2019

giups mink vs ạ

mỗi câu b thôi