tìm x:
(x+1)^4=(x+1)^2
giúp mình nhanh nha!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,50\%x-0,2+x=\dfrac{4}{5}\)
\(\Leftrightarrow\dfrac{1}{2}x-0,2+x=\dfrac{4}{5}\)
\(\Leftrightarrow\dfrac{1}{2}x+x=\dfrac{4}{5}+0,2\)
\(\Leftrightarrow\dfrac{3}{2}x=\dfrac{4}{5}+\dfrac{1}{5}\)
\(\Leftrightarrow\dfrac{3}{2}x=1\)
\(\Leftrightarrow x=\dfrac{2}{3}\)
\(b,\left(x-\dfrac{3}{4}\right):\dfrac{1}{2}+\dfrac{3}{2}=\dfrac{25}{2}\)
\(\Leftrightarrow\left(x-\dfrac{3}{4}\right).2=\dfrac{25}{2}-\dfrac{3}{2}\)
\(\Leftrightarrow\left(x-\dfrac{3}{4}\right).2=\dfrac{22}{2}\)
\(\Leftrightarrow x-\dfrac{3}{4}=11:2\)
\(\Leftrightarrow x=\dfrac{11}{2}+\dfrac{3}{4}\)
\(\Leftrightarrow x=\dfrac{25}{4}\)
1) \(A=\left(x+y\right)^2+4xy=x^2+2xy+y^2+4xy=x^2+6xy+y^2\)
2) \(B=\left(6x-2\right)^2+4\left(3x-1\right)\left(2+y\right)+\left(y+2\right)^2\)
\(=\left(6x-2\right)^2+2\left(6x-2\right)\left(y+2\right)+\left(y+2\right)^2\)
\(=\left(6x-2+y+2\right)^2=\left(6x+y\right)^2=36x^2+12xy+y^2\)
3) \(C=\left(x-y\right)^2+2\left(x^2-y^2\right)+\left(x+y\right)^2\)
\(=\left(x-y\right)^2+2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2\)
\(=\left(x-y+x+y\right)^2=\left(2x\right)^2=4x^2\)
\(|-2x+1,5|=\dfrac{1}{4}\Rightarrow-2x+1,5=\pm\dfrac{1}{4}\)
\(-2x+1,5=\dfrac{1}{4}\Rightarrow-2x=1,5-0,25\Rightarrow-2x=1,25\Rightarrow x=1,25:\left(-2\right)\Rightarrow x=...\)
\(-2x+1,5=-\dfrac{1}{4}\Rightarrow-2x=-0,25-1,5\Rightarrow-2x=1,75\Rightarrow x=1,75:\left(-2\right)\Rightarrow x=...\)
\(\dfrac{3}{2}-|1.\dfrac{1}{4}+3x|=\dfrac{1}{4}\Rightarrow|1.\dfrac{1}{4}+3x|=\dfrac{3}{2}-\dfrac{1}{4}\Rightarrow|1.\dfrac{1}{4}+3x|=\dfrac{5}{4}\)
\(\Rightarrow1.\dfrac{1}{4}+3x=\pm\dfrac{5}{4}\)
\(1.\dfrac{1}{4}+3x=\dfrac{5}{4}\Rightarrow\dfrac{1}{4}+3x=\dfrac{5}{4}\Rightarrow3x=\dfrac{5}{4}-\dfrac{1}{4}\Rightarrow3x=1\Rightarrow x=3\)
\(1.\dfrac{1}{4}+3x=-\dfrac{5}{4}\Rightarrow\dfrac{1}{4}+3x=-\dfrac{5}{4}\Rightarrow3x=-\dfrac{5}{4}-\dfrac{1}{4}\Rightarrow3x=-\dfrac{3}{2}x=...\)
\(\left|x+1\right|-\left|-2x-2\right|=2\)
\(\Leftrightarrow\left|x+1\right|-\left|-2\left(x+1\right)\right|=2\)
\(\Leftrightarrow\left|x+1\right|-2\left|x+1\right|=2\)
\(\Leftrightarrow-\left|x+1\right|=2\)
\(\Leftrightarrow\left|x+1\right|=-2\)
\(\Leftrightarrow\left|x+1\right|+2=0\)
Mà: \(\left|x+1\right|\ge0\forall x\Rightarrow\left|x+1\right|+2\ge2>0\)
\(\Leftrightarrow\left|x+1\right|+2=0\) (vô lí)
Vậy phương trình vô nghiệm:
\(x\in\varnothing\)
=>|x+1|-2|x+1|=2
=>-|x+1|=2
=>|x+1|=-2(vô lý)
Vậy: \(x\in\varnothing\)
( 1/2 + 1/3 ) x 2/5
c1 = 5/6 x 2/5 = 1/3
c2 = 1/2 x 2/5 + 1/3 x 2/5
= 1/5 + 2/15
= 1/3
3/5 x 17/21 x 2/5
c1 := 17/35 x 2/5 = 34/175
c2 : = (3/5 x 2/5) x 17/21
= 6/25 x 17/21
= 34/175?
( 1/3 - 1/5 ) x 1/2
c1 : = 2/15 x 1/2
= 1/15
c2 : = 1/3 x 1/2 - 1/5 x 1/2
= 1/6 - 1/10
= 1/15
1) \(\Rightarrow16x^2+24x+9+9x^2-24x+16+4-25x^2=x\)
\(\Rightarrow x=29\)
2)
a) \(=x^2-9-x^2+6x-9=6x-18\)
b) \(=\left(3x-1+2x+1\right)^2=\left(5x\right)^2=25x^2\)
a) \(\left|4x-1\right|-\left|3x-\dfrac{1}{2}\right|=0\\ \Leftrightarrow\left|4x-1\right|=\left|3x-\dfrac{1}{2}\right|\\ \Leftrightarrow\left[{}\begin{matrix}4x-1=3x-\dfrac{1}{2}\\4x-1=\dfrac{1}{2}-3x\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}4x-3x=1-\dfrac{1}{2}\\4x+3x=\dfrac{1}{2}+1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\7x=\dfrac{3}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{3}{14}\end{matrix}\right.\)
Vậy \(x\in\left\{\dfrac{1}{2};\dfrac{3}{14}\right\}\) là nghiệm của pt.
b) \(\left|x-1\right|-2x=\dfrac{1}{2}\\ \Leftrightarrow\left|x-1\right|=2x+\dfrac{1}{2}\left(ĐK:x\ge\dfrac{-1}{4}\right)\\ \Leftrightarrow\left[{}\begin{matrix}x-1=2x+\dfrac{1}{2}\\x-1=-2x-\dfrac{1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x-2x=1+\dfrac{1}{2}\\x+2x=1-\dfrac{1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}-x=\dfrac{3}{2}\\3x=\dfrac{1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{2}\left(ktmđk\right)\\x=\dfrac{1}{6}\left(tmđk\right)\end{matrix}\right.\)
Vậy \(x=\dfrac{1}{6}\) là nghiệm của pt.
Lời giải:
a.
$|4x-1|-|3x-\frac{1}{2}|=0$
$\Leftrightarrow |4x-1|=|3x-\frac{1}{2}$
\(\Leftrightarrow \left[\begin{matrix} 4x-1=3x-\frac{1}{2}\\ 4x-1=\frac{1}{2}-3x\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{1}{2}\\ x=\frac{3}{14}\end{matrix}\right.\)
b. Nếu $x\geq 1$ thì:
$|x-1|-2x=\frac{1}{2}$
$\Leftrightarrow x-1-2x=\frac{1}{2}$
$\Leftrightarrow -x-1=\frac{1}{2}$
$\Leftrightarrow x=\frac{-3}{2}$ (vô lý vì $x\geq 1$)
Nếu $x< 1$ thì:
$1-x-2x=\frac{1}{2}$
$\Leftrightarrow x=\frac{1}{6}$ (tm)
Đặt \(x+2=t\ne0\Rightarrow x+1=t-1\)
\(A=\dfrac{x+1}{\left(x+2\right)^2}=\dfrac{t-1}{t^2}=-\dfrac{1}{t^2}+\dfrac{1}{t}=-\left(\dfrac{1}{t}-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
\(A_{max}=\dfrac{1}{4}\) khi \(t=2\) hay \(x=0\)
X=-1
mk chỉ biết kết quả thôi
bạn ns vậy thì ai mà chả bt!