tìm x để biểu thức A=(3*x-2)*(4-x)
a,A>0
b,A<0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có :
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Rightarrow\frac{(a+b)}{ab}\ge\frac{4}{(a+b)}\)
\(\Rightarrow(a+b)^2\ge4ab\)
\(\Rightarrow(a-b)^2\ge0(đpcm)\)
Mình để cho dấu lớn bằng để dễ hiểu nha bạn
c,Ta có : \(x^2-4x+5=(x^2-4x+4)+1=(x-2)^2+1\ge1\)
Dấu " = "xảy ra khi : \((x-2)^2=0\Rightarrow x=x-2=0\Rightarrow x=2\)
Rồi bạn tự suy ra.Mk chắc đúng không nữa nên bạn thông cảm
Còn câu b và d bạn tự làm nhé
Chúc bạn học tốt
\(a,\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)
\(\Leftrightarrow\frac{a^2+2ab+b^2-4ab}{ab\left(a+b\right)}\ge0\)
\(\Leftrightarrow\frac{a^2-2ab+b^2}{ab\left(a+b\right)}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)(luôn đúng vì a>0,b>0)
dấu ''='' xảy ra khi và chỉ khi a=b
\(b,x+\frac{1}{x}\ge2\)
\(\Leftrightarrow x-2+\frac{1}{x}\ge0\)
\(\Leftrightarrow\frac{x^2-2x+1}{x}\ge0\Leftrightarrow\frac{\left(x-1\right)^2}{x}\ge0\)(luôn đúng)
dấu''='' xảy ra khi và chỉ khi x=1
áp dụng\(x+\frac{1}{x}\ge2\)(c/m trên) =>GTNN là 2
dấu ''='' xay ra khi và chỉ khi x=1
\(c,\Leftrightarrow\left(x-2\right)^2+1\ge1\)
=> GTNN là 1 tại x=2
\(d,\frac{-\left(x^2+4x+4+6\right)}{x^2+2018}=\frac{-\left(x+2\right)-6}{x^2+2018}< 0\)
vì -(x+2 )-6 <-6
a) \(ĐKXĐ:\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)
\(A=\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+4}{3-x}\)
\(\Leftrightarrow A=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{x+3}{x-2}+\frac{2\left(x+2\right)}{x-3}\)
\(\Leftrightarrow A=\frac{2x-9-\left(x-3\right)\left(x+3\right)+2\left(x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)
\(\Leftrightarrow A=\frac{2x-9-x^2+9+2x^2-8}{\left(x-2\right)\left(x-3\right)}\)
\(\Leftrightarrow A=\frac{x^2+2x-8}{\left(x-2\right)\left(x-3\right)}\)
\(\Leftrightarrow A=\frac{\left(x+4\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)
\(\Leftrightarrow A=\frac{x+4}{x-3}\)
b) Để \(A\inℤ\)
\(\Leftrightarrow\frac{x+4}{x-3}\inℤ\)
\(\Leftrightarrow1+\frac{7}{x-3}\inℤ\)
\(\Leftrightarrow x-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Leftrightarrow x\in\left\{2;4;-4;10\right\}\)
Vậy để \(A\inℤ\Leftrightarrow x\in\left\{2;4;-4;10\right\}\)
c) Để \(A=\frac{3}{5}\)
\(\Leftrightarrow\frac{x+4}{x-3}=\frac{3}{5}\)
\(\Leftrightarrow5x+20=3x-9\)
\(\Leftrightarrow2x+29=0\)
\(\Leftrightarrow x=-\frac{29}{2}\)
d) Để \(A< 0\)
\(\Leftrightarrow\frac{x+4}{x-3}< 0\)
\(\Leftrightarrow1+\frac{7}{x-3}< 0\)
\(\Leftrightarrow\frac{-7}{x-3}< 1\)
\(\Leftrightarrow-7< x-3\)
\(\Leftrightarrow x>-4\)
e) Để \(A>0\)
\(\Leftrightarrow\frac{x+4}{x-3}>0\)
\(\Leftrightarrow1+\frac{7}{x-3}>0\)
\(\Leftrightarrow\frac{-7}{x-3}>1\)
\(\Leftrightarrow-7>x-3\)
\(\Leftrightarrow x< -4\)
Bn ơi,cho mik hỏi:trong hai biểu thức ở câu a và b sao ko có x vậy?
Bn gõ nhầm ah?
a)
1.p = 0 <=> Tử thức = 0
2.p > 0 <=> Tử thức và mẫu thức cùng dấu.
3.p < 0 <=> Tử thức và mẫu thức khác dấu.
b) Q = x2 - 2/5x
<=> Q = x(x-2/5)
1. Q = 0 <=> x = 0 hoặc x = 2/5
2. Q > 0 <=> x > 2/5 hoặc x <0
3. Q < 0 <=> x và x - 2/5 trái dấu
ĐKXĐ: \(x\ne-5;0\)
\(A=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x.\left(x+5\right)}\)
\(=\frac{\left(x^2+2x\right).x}{2x.\left(x+5\right)}+\frac{2.\left(x+5\right).\left(x-5\right)}{2x.\left(x+5\right)}+\frac{50-5x}{2x\left(x+5\right)}\)
\(=\frac{x^3+2x^2}{2x\left(x+5\right)}+\frac{2.\left(x^2-25\right)}{2x\left(x+5\right)}+\frac{50-5x}{2x\left(x+5\right)}=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)
\(=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}=\frac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}=\frac{x\left(x+5\right)\left(x-1\right)}{2x\left(x+5\right)}=\frac{x-1}{2}\)
b. \(A=0\Leftrightarrow\frac{x-1}{2}=0\Rightarrow x-1=0\Leftrightarrow x=1\)
\(A=\frac{1}{4}\Leftrightarrow\frac{x-1}{2}=\frac{1}{4}\Leftrightarrow4x-4=2\Leftrightarrow4x-6=0\Leftrightarrow x=\frac{3}{2}\)
c. Với x=0 thì \(A=\frac{0-1}{2}=-\frac{1}{2}\)
Với x=2 thì: \(A=\frac{2-1}{2}=\frac{1}{2}\)
d. \(A>0\Leftrightarrow\frac{x-1}{2}>0\Rightarrow\left(x-1\right).2>0\Rightarrow x-1>0\Leftrightarrow x>1\)
\(A< 0\Leftrightarrow\frac{x-1}{2}< 0\Leftrightarrow\left(x-1\right).2< 0\Leftrightarrow x-1< 0\Leftrightarrow x< 1;x\ne-5,0\)
e. \(A=\frac{x-1}{2}\inℤ\Rightarrow x-1\in Z\Rightarrow x\inℤ\)
Và \(\left(x-1\right)⋮2\Rightarrow x:2dư1\)
Vậy \(A\in Z\Leftrightarrow x\inℤ\)và x chia 2 dư 1
1.
a) \(\frac{x+2}{2x-3}< 0\) ( ĐKXĐ : x ≠ 3/2 )
Xét hai trường hợp :
1. \(\hept{\begin{cases}x+2< 0\\2x-3>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< -2\\x>\frac{3}{2}\end{cases}}\)( loại )
9. \(\hept{\begin{cases}x+2>0\\2x-3< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>-2\\x< \frac{3}{2}\end{cases}}\Leftrightarrow-2< x< \frac{3}{2}\)
=> Với \(-2< x< \frac{3}{2}\)thì tmđb
b) \(\frac{x\left(x-2\right)}{x^2+3}>0\)
Vì x2 + 3 ≥ 3 > 0 ∀ x
nên ta chỉ cần xét x( x - 2 ) > 0
1. \(\hept{\begin{cases}x>0\\x-2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>0\\x>2\end{cases}}\Leftrightarrow x>2\)
2. \(\hept{\begin{cases}x< 0\\x-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 0\\x< 2\end{cases}}\Leftrightarrow x< 0\)
Vậy \(\orbr{\begin{cases}x>2\\x< 0\end{cases}}\)thì tmđb
2.
A = x2 + 4x = x( x + 4 )
Để A dương => A > 0
<=> x( x + 4 ) > 0
Xét hai trường hợp
1. \(\hept{\begin{cases}x>0\\x+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>0\\x>-4\end{cases}}\Leftrightarrow x>0\)
2. \(\hept{\begin{cases}x< 0\\x+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 0\\x< -4\end{cases}}\Leftrightarrow x< -4\)
Vậy với \(\orbr{\begin{cases}x>0\\x< -4\end{cases}}\)thì tmđb
B = ( x - 3 )( x + 7 )
Để B dương => B > 0
<=> ( x - 3 )( x + 7 ) > 0
Xét hai trường hợp :
1. \(\hept{\begin{cases}x-3>0\\x+7>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>3\\x>-7\end{cases}}\Leftrightarrow x>3\)
2. \(\hept{\begin{cases}x-3< 0\\x+7< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 3\\x< -7\end{cases}}\Leftrightarrow x< -7\)
Vậy với \(\orbr{\begin{cases}x>3\\x< -7\end{cases}}\)thì tmđb
C = ( 1/2 - x )( 1/3 - x )
Để C dương => C > 0
<=> ( 1/2 - x )( 1/3 - x ) > 0
Xét hai trường hợp
1. \(\hept{\begin{cases}\frac{1}{2}-x>0\\\frac{1}{3}-x>0\end{cases}}\Leftrightarrow\hept{\begin{cases}-x>-\frac{1}{2}\\-x>-\frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x< \frac{1}{2}\\x< \frac{1}{3}\end{cases}}\Leftrightarrow x< \frac{1}{3}\)
2. \(\hept{\begin{cases}\frac{1}{2}-x< 0\\\frac{1}{3}-x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}-x< -\frac{1}{2}\\-x< -\frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x>\frac{1}{2}\\x>\frac{1}{3}\end{cases}}\Leftrightarrow x>\frac{1}{2}\)
Vậy với \(\orbr{\begin{cases}x< \frac{1}{3}\\x>\frac{1}{2}\end{cases}}\)thì tmđb