cho hai tập hợp A=(-vô cực;-1) hợp(17;+vô cực) và [2-3m;8-3m] tìm giá trị của m để B không phải là con của A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(-\infty;0\right);B=\left(1;+\infty\right);C=\left(0;1\right)\\ \left(A\cup B\right)\cap C=\left(-\infty;+\infty\right)\cap C=\left(0;1\right)\)
\(\left\{{}\begin{matrix}A=\left(2;+\infty\right)\\B=\left(m^2-7;+\infty\right)\end{matrix}\right.\) \(\left(m>0\right)\)
Để \(A\)\\(B\) là 1 khoảng có độ dài bằng 6
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-7>2\\m^2-7-2=16\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2>9\\m^2=25\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>3\cup m< -3\\m=5\cup m=-5\end{matrix}\right.\)
\(\Leftrightarrow m=5\cup m=-5\) thỏa mãn điều kiện đề bài
Để B tồn tại \(\Leftrightarrow2m< 3m+1\Leftrightarrow m>-1\)
TH1: \(10\le3m+1\) \(\Leftrightarrow m\ge3\)
\(A\cap B=[2m;10)\) có đúng ba số nguyên khi \(6< 2m\le7\) \(\Leftrightarrow3< m\le\dfrac{7}{2}\) ( tm đk )
TH2: \(3m+1< 10\) \(\Leftrightarrow m< 3\)
\(A\cap B=\left[2m;3m+1\right]\) có đúng ba số nguyên khi
Trường hợp m nguyên thì \(2m+2=3m+1\Leftrightarrow m=1\) (thỏa mãn)
Trường hợp m là số thực thì rộng lắm...
(A hợp B) giao C
=((-vô cực;-2] hợp [3;+vô cực)) giao (0;5)
=[3;5)
a: \(A\cap B=\left[2;3\right]\)
\(A\cup B=\left(-\infty;+\infty\right)\)
b: \(\left(A\cup B\right)\cap C=\left(0;4\right)\)
\(\dfrac{2x}{x^2+1}\ge1\Leftrightarrow2x\ge x^2+1\Leftrightarrow x^2-2x+1\le0\\ \Leftrightarrow\left(x-1\right)^2\le0\)
Mà \(\left(x-1\right)^2\ge0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
\(A=\left\{1\right\}\)
Để \(x^2-2bx+4=0\Leftrightarrow\Delta=4b^2-4\cdot4< 0\)
\(\Leftrightarrow b^2-4< 0\Leftrightarrow\left(b-2\right)\left(b+2\right)< 0\\ \Leftrightarrow x\le-2;x\ge2\)
\(\Leftrightarrow B=\left\{x\in R|x\le-2;x\ge2\right\}\)
Vậy \(A\cap B=\varnothing\)