Tìm x
| 2/3x - 1/4 | - 1 = 0,5
nhanh mình tick ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2.\left(x+\frac{2}{5}\right)+1\frac{1}{4}=\frac{11}{20}\)
\(2.\left(x+\frac{2}{5}\right)+\frac{5}{4}=\frac{11}{20}\)
\(2.\left(x+\frac{2}{5}\right)=\frac{-7}{10}\)
\(x+\frac{2}{5}=\frac{-7}{20}\)
\(x=\frac{-13}{20}\)
Vậy \(x=\frac{-13}{20}\)
b)\(x-1\frac{1}{8}-\frac{2}{3}x-\frac{5}{6}x=75\%\)
\(\left(x-\frac{2}{3}x-\frac{5}{6}x\right)-\frac{9}{8}=\frac{3}{4}\)
\(\frac{-1}{2}x-\frac{9}{8}=\frac{3}{4}\)
\(\frac{-1}{2}x=\frac{15}{8}\)
\(x=\frac{-15}{4}\)
Vậy \(x=\frac{-15}{4}\)
Nhiều như vậy sao trả lời hết được
Xin lỗi nha
Tk cho mk 1 cái
a; \(x+3\) ⋮ \(x\) - 4 (\(x\ne\) 4; \(x\in\) Z)
\(x\) - 4 + 7 ⋮ \(x-4\)
7 ⋮ \(x\) - 4
\(x\) - 4 \(\in\) Ư(7) = {- 7; -1; 1; 7}
Lập bảng ta có:
\(x-4\) | - 7 | -1 | 1 | 7 |
\(x\) | -3 | 3 | 5 | 11 |
Theo bảng trên ta có: \(x\) \(\in\) {- 3; 3; 5; 11}
Vậy \(x\) \(\in\) {- 3; 3; 5; 11}
a) A có nghĩa \(\Leftrightarrow\left(x+1\right)^2-3x\ne0\), \(x^3+1\ne0\),\(x+1\ne0\),\(3x^2+6x\ne0\) và \(x^2-4\ne0\)
+) \(\left(x+1\right)^2-3x\ne0\Leftrightarrow x^2+2x+1-3x\ne0\)
\(\Leftrightarrow x^2-x+1\ne0\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ne0\)(luôn đúng)
+) \(x^3+1\ne0\Leftrightarrow x^3\ne-1\Leftrightarrow x\ne-1\)
+) \(x+1\ne0\Leftrightarrow x\ne-1\)
+) \(3x^2+6x\ne0\Leftrightarrow3x\left(x+2\right)\ne0\)
\(\Leftrightarrow x\ne0;x\ne-2\)
+) \(x^2-4\ne0\Leftrightarrow x^2\ne4\Leftrightarrow x\ne\pm2\)
Vậy ĐKXĐ của A là \(x\ne-1;x\ne0;x\ne\pm2\)
a, \(Đkxđ:\hept{\begin{cases}x\ne-1\\x\ne0\\x\ne-2\end{cases}}\)
\(A=\left[\frac{\left(x+1\right)^2}{\left(x+1\right)^2-3x}-\frac{2x^2+4x-1}{x^3+1}-\frac{1}{x+1}\right]:\frac{x^2-4}{3x^2+6x}\)
\(=\left[\frac{x^2+2x+1}{x^2-x+1}-\frac{2x^2+4x-1}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{1}{x+1}\right].\frac{3x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{\left(x^2+2x+1\right)\left(x+1\right)-2x^2-4x+1-\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{3x}{x-2}\)
\(=\frac{x^3+1}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{3x}{x-2}\)
\(=\frac{3x}{x-2}=3+\frac{6}{x-2}\)
b, Để A nguyên thì \(\Leftrightarrow6\)chia hết cho \(x-2\)
Hay \(\left(x-2\right)\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
x-2 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
x | -4 | -1 | 0 | 1 | 3 | 4 | 5 | 8 |
Vậy ............................
`@` `\text {Ans}`
`\downarrow`
`(8x-3)(3x+2)-(4x+7)(x+4)=(2x+1)(5x-1)-33`
`\Leftrightarrow 8x(3x+2) -3(3x+2) - 4x(x+4) + 7(x+4) = 2x(5x-1) + 5x-1 - 33`
`\Leftrightarrow 24x^2 + 16x - 9x - 6 - 4x^2 - 16x - 7x - 28 = 10x^2 - 2x + 5x - 1 - 33`
`\Leftrightarrow 20x^2 -16x - 34 = 10x^2 + 3x - 34`
`\Leftrightarrow 20x^2 - 16x - 34 - 10x^2 - 3x + 34 = 0`
`\Leftrightarrow 10x^2 - 19x = 0`
`\Leftrightarrow x(10x - 19)=0`
`\Leftrightarrow `\(\left[{}\begin{matrix}x=0\\10x-19=0\end{matrix}\right.\)
`\Leftrightarrow `\(\left[{}\begin{matrix}x=0\\10x=19\end{matrix}\right.\)
`\Leftrightarrow `\(\left[{}\begin{matrix}x=0\\x=\dfrac{19}{10}\end{matrix}\right.\)
Vậy, `x={0; 19/10}.`
Ta có : |2/3x - 1/4| - 1 = 0,5
=> |2/3x - 1/4| = 1,5
<=> 2/3x - 1/4 = 1,5
2/3x - 1/4 = -1,5
=> 2/3x = 2,9
2/3x = -0,1
=> x = 2,9. 3/2
x = -0,1.3/2