Giá trị nguyên của x, biết
\(\frac{-2}{5}\)\(\le\)x - \(\frac{7}{5}\)< \(\frac{3}{5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-\frac{17}{21}:\left(\frac{5}{4}-\frac{2}{5}\right)< x+\frac{4}{7}< 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)
\(\Leftrightarrow-\frac{17}{21}:\frac{17}{20}< x+\frac{4}{7}< \frac{12}{12}-\frac{6}{12}+\frac{4}{12}-\frac{3}{12}\)
\(\Leftrightarrow-\frac{17}{21}.\frac{20}{17}< x+\frac{4}{7}< \frac{7}{12}\)
\(\Leftrightarrow-\frac{20}{21}< x+\frac{4}{7}< \frac{7}{12}\)
\(\Leftrightarrow-\frac{20}{21}< x< \frac{1}{84}\)
\(\Leftrightarrow-\frac{80}{84}< x< \frac{1}{84}\)
\(\Leftrightarrow-80< x< 1\Leftrightarrow x\in\left\{-79;-78;...;0\right\}\)
mà để Giá trị nguyên lớn nhất của x
\(\Rightarrow x=-1\)
\(a)\frac{1}{3}+\frac{-2}{5}+\frac{1}{6}+\frac{-1}{5}\le x< \frac{-3}{4}+\frac{2}{7}+\frac{-1}{4}+\frac{3}{5}+\frac{5}{7}\)
\(\Rightarrow\frac{1}{3}+\frac{1}{6}+\frac{-2}{5}+\frac{-1}{5}\le x< \frac{-3}{4}+\frac{-1}{4}+\frac{2}{7}+\frac{5}{7}+\frac{3}{5}\)
\(\Rightarrow\frac{2}{6}+\frac{1}{6}+\frac{-3}{5}\le x< -1+1+\frac{3}{5}\)
\(\Rightarrow\frac{1}{2}+\frac{-3}{5}\le x< \frac{3}{5}\)
\(\Rightarrow\frac{-1}{10}\le x< \frac{6}{10}\)
\(\Rightarrow-1\le x< 6\)
\(\Rightarrow x\in\left\{-1;0;1;2;3;4;5\right\}\)
Bài b tương tự
giá trị x>0 nguyên thỏa mãn: \(-\frac{7}{3}< \left|\frac{2}{7}-x\right|-\frac{5}{2}< -\frac{7}{4} \)
\(\Leftrightarrow\frac{-2}{17}\le\frac{x}{17}\le\frac{2}{17}\Rightarrow x\in\left(-2;-1;0;1;2\right)\)
\(\Leftrightarrow\frac{-1}{24}\le\frac{x}{24}\le\frac{5}{24}\Rightarrow x\in\left(-1;0;1;2;3;4;5\right)\)
2 câu sau tự làm nha
\(-\frac{5}{17}+\frac{3}{17}\le\frac{x}{17}\le\frac{13}{17}+-\frac{11}{17}\)
\(\frac{-2}{17}\le\frac{x}{17}\le\frac{2}{17}\)
=> \(x\in\left\{-2;-1;0;1;2\right\}\)
\(\frac{3}{7}\cdot15\cdot\frac{1}{3}+\frac{3}{7}\cdot5\cdot\frac{2}{5}\le x\le\left(3\frac{1}{2}:7-6\frac{1}{2}\right)\cdot\left(-2\frac{1}{3}\right)\)
\(\Leftrightarrow\frac{15}{7}+\frac{6}{7}\le x\le-6\cdot\frac{-5}{3}\)
\(\Leftrightarrow3\le x\le10\)
Mà \(x\in Z\)
\(\Rightarrow x\in\left\{4;5;6;7;8;9\right\}\)
1/ Ta có \(\frac{1}{3}< \frac{9}{x}< \frac{1}{2}\)
\(\Rightarrow\frac{9}{27}< \frac{9}{x}< \frac{9}{18}\)
\(\Rightarrow27>x>18\)
Vì \(x\in Z\Rightarrow x\in\left\{19,20,...,26\right\}\)
Vậy....
\(\left(x-\frac{3}{5}\right).\left(x+\frac{2}{7}\right)< 0\)
\(\Rightarrow\hept{\begin{cases}x-\frac{3}{5}< 0\\x+\frac{2}{7}>0\end{cases}\text{hoặc}\hept{\begin{cases}x-\frac{3}{5}>0\\x+\frac{2}{7}< 0\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x< \frac{3}{5}\\x>-\frac{2}{7}\end{cases}\text{hoặc}\hept{\begin{cases}x>\frac{3}{5}\\x< -\frac{2}{7}\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}-\frac{2}{7}< x< \frac{3}{5}\\x\in\varnothing\end{cases}}\)
\(\Rightarrow-\frac{2}{7}< x< \frac{3}{5}\)
\(\Rightarrow x=0\)
Vậy x = 0
\(\left(x-\frac{3}{5}\right)\cdot\left(x+\frac{2}{7}\right)< 0\)
TH1 : \(\Rightarrow\hept{\begin{cases}x-\frac{3}{5}< 0\\x+\frac{2}{7}>0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}x< \frac{3}{5}\\x>-\frac{2}{7}\end{cases}}\) \(\Rightarrow\text{ }-\frac{2}{7}< x< \frac{3}{5}\)
TH2 : \(\Rightarrow\hept{\begin{cases}x-\frac{3}{5}>0\\x+\frac{2}{7}< 0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}x>\frac{3}{5}\\x< -\frac{2}{7}\end{cases}}\) \(\Rightarrow\text{ Không xảy ra}\)
Vì \(x\in Z\text{ }\Rightarrow\text{ }x=0\)