Bài 5 : Tìm các số tự nhiên x,y thỏa mãn A . 2120x chia hết cho 2 B. 3944y chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì x chia hết cho 2 nên tận cùng là 0, 2,4,6,8
Mà 30 < x < 50
=> x={32;34;36;38;40;42;44;46;48}
b)Vì x chia hết cho cả 2,5 nên x có tân cùng là 0
Mà: 10<y<90
=>x={20;30;40;50;60;70;80}
Bài 3
126 ⋮ x và 210 ⋮ x
⇒ x ∈ ƯC(126; 210)
Ta có:
126 = 2.3².7
210 = 2.3.5.7
⇒ ƯCLN(126; 210) = 2.3.7 = 42
⇒ ƯC(126; 210) = Ư(42) = {1; 2; 3; 6; 7; 14; 21; 42}
Mà 15 < x < 30
⇒ x = 21
Bài 4
a) 320 ⋮ a; 480 ⋮ a và a là số lớn nhất
⇒ a = ƯCLN(320; 480)
Ta có:
320 = 2⁶.5
480 = 2⁵.3.5
⇒ a = ƯCLN(320; 480) = 2⁵.5 = 160
b) 360 ⋮ a; 600 ⋮ a và a là số lớn nhất
⇒ a = ƯCLN(360; 600)
Ta có:
360 = 2³.3².5
600 = 2³.3.5²
⇒ a = ƯCLN(360; 600) = 2³.3.5 = 120
Gọi số cần tìm là a
Ta có a chia 5 dư 3 => a = 5b + 3
<=> 2a = 10b + 6
2a-1 = 10b + 5 \(⋮\)5 ( 1 )
a chia 7 dư 4 => a= 7c +4
2a = 14c + 8 => 2a - 1 = 14b + 7 \(⋮7\)( 2 )
a chia 9 dư 5 => a = 9d + 5
<=> 2a = 18d + 10 => 2a -1 = 18d + 9 \(⋮9\)( 3 )
Từ ( 1 ); ( 2 ); ( 3 ) => 2a - 1 \(⋮\)5;7;9
Để a là STN nhỏ nhất thì 2a - 1 \(\in BCNN\left(5;7;9\right)\)= 5.7.9 = 315
=> 2a = 316 => a = 158.
b, Tương tự phần a.
1: a chia 3 dư 2 nên a=3k+2
4a+1=4(3k+2)+1
=12k+8+1
=12k+9=3(4k+3) chia hết cho 3
2:
a: 36 chia hết cho 3x+1
=>\(3x+1\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;9;-9;12;-12;18;-18;36;-36\right\}\)
mà x là số tự nhiên
nên 3x+1 thuộc {1;4}
=>x thuộc {0;1}
b: 2x+9 chia hết cho x+2
=>2x+4+5 chia hết cho x+2
=>5 chia hết cho x+2
=>x+2 thuộc {1;-1;5;-5}
=>x thuộc {-1;-3;3;-7}
mà x thuộc N
nên x=3
4
Do 288 chia n dư 38=>250 chia hết cho n (1)
=> n > 38 (2)
Do 414 chia n dư 14=> 400 chia hết cho n (3)
Từ (1), (2), (3)=>n thuộc Ư(250,400;n>39)
=> n=50
1
x+15 chia hết cho x+2
x+2 chia hết cho x+2
=> x+15-(x+2) chia hết ch0 x+2
=>13 chia hết cho x+2
Do x thuộc N => x+2>= 0+2=2
Mà 13 chia hết cho 1 và 13
=> x+2 = 13
=> x=11
Lời giải:
a. Để $\overline{2120x}$ chia hết cho $2$ thì $x$ là chữ số tận cùng phải rơi vào các trường hợp $0,2,4,6,8$
b. Để $\overline{3944y}$ chia hết cho $5$ thì $y$ nhận giá trị $0$ hoặc $5$