Cho pt : \(x^4+2mx^2+m+12=0\) . Tìm m để pt có
a) 1 nghiêm
b) 2 nghiệm
c) 3 nghiệm
d) 4 nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PT thì phải là $(m+1)x^2-2mx+2m=0$ nhé bạn chứ không có =0 thì không phải pt.
Lời giải:
TH1: $m=-1$ thì PT có nghiệm duy nhất $x=1$ $(*)$
----------------------------------------
TH2: $m\neq -1$ thì PT là PT bậc 2 ẩn $x$
$\Delta'=-m(m+2)$
PT có nghiệm khi $\Delta'=-m(m+2)\geq 0\Leftrightarrow -2\leq m\leq 0$
PT vô nghiệm khi $\Delta'=-m(m+2)<0\Leftrightarrow m< -2$ hoặc $m>0$
PT có 2 nghiệm pb khi $\Delta=-m(m+2)>0\Leftrightarrow -2< m< 0$
Như vậy, kết hợp 2 TH ta có:
PT ban đầu có nghiệm khi $-2\leq m\leq 0$
PT ban đầu vô nghiệm khi $m<-2$ hoặc $m>0$
PT ban đầu có 2 nghiệm phân biệt khi $-2< m< 0$ và $m\neq -1$
a, Pt có nghiệm \(x=\sqrt{2}\) tức là
\(2\left(m-4\right)-2m\sqrt{2}+m-2=0\)
\(\Leftrightarrow2m-8-2m\sqrt{2}+m-2=0\)
\(\Leftrightarrow m\left(3-2\sqrt{2}\right)=10\)
\(\Leftrightarrow m=\frac{10}{3-2\sqrt{2}}\)
b, *Với m = 4 thì pt trở thành
\(\left(4-4\right)x^2-2.4.x+4-2=0\)
\(\Leftrightarrow-8x+2=0\)
\(\Leftrightarrow x=\frac{1}{4}\)
Pt này ko có nghiệm kép
*Với \(m\ne4\)thì pt đã cho là pt bậc 2
Có \(\Delta'=m^2-\left(m-4\right)\left(m-2\right)=m^2-m^2-6m+8=-6m+8\)
Pt có nghiệm kép \(\Leftrightarrow\Delta'=0\)
\(\Leftrightarrow m=\frac{4}{3}\)
Với \(m=\frac{4}{3}\) thì \(\Delta'=0\)
Pt có nghiệm kép \(x=\frac{-b'}{a}=\frac{m}{m-4}=\frac{\frac{4}{3}}{\frac{4}{3}-4}=-\frac{1}{2}\)
c, Pt có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'>0\)
\(\Leftrightarrow-6m+8>0\)
\(\Leftrightarrow m< \frac{4}{3}\)
có ai chơi minecraft bedwar sever 3fmc.com ko chơi thì kb nha tui là Bluebood_VN
pt \(x^2-2mx+m^2-2m=0\) có \(\Delta'=\left(-m\right)^2-\left(m^2-2m\right)=2m\)
Để pt có hai nghiệm phân biệt x1, x2 thì \(\Delta'>0\)\(\Leftrightarrow\)\(m>0\)
Ta có : \(\sqrt{x_1}+\sqrt{x_2}=3\)\(\Leftrightarrow\)\(x_1+x_2+2\sqrt{x_1x_2}=9\) (*)
Theo định lý Vi-et ta có : \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m^2-2m\end{cases}}\)
(*) \(\Leftrightarrow\)\(2m+2\sqrt{m^2-2m}=9\)
\(\Leftrightarrow\)\(4\left(m^2-2m\right)=\left(9-2m\right)^2\)
\(\Leftrightarrow\)\(4m^2-8m=81-36m+4m^2\)
\(\Leftrightarrow\)\(28m=81\)
\(\Leftrightarrow\)\(m=\frac{81}{28}\) ( tm )
...
pt có 2 nghiệm pb <=> \(\Delta=25-4m>0\Leftrightarrow4m<25\Leftrightarrow m<\frac{25}{4}\)
đầu tiên bn tính đenta
cho đenta lớn hơn hoặc = 0 thì pt có nghiệm
b, từ x1-2x2=5
=> x1=5+2x2
chứng minh đenta lớn hơn 0
theo hệ thức viet tính đc x1+x2=..
x1*x2=....
thay vào cái 1 rồi vào 2 là đc
- Với \(m=1\) pt vô nghiệm (ktm)
- Với \(m\ne1\) pt có 2 nghiệm pb đều âm khi:
\(\left\{{}\begin{matrix}\Delta'=\left(m-1\right)^2+m\left(m-1\right)>0\\x_1+x_2=-2< 0\left(luôn-đúng\right)\\x_1x_2=\dfrac{-m}{m-1}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)\left(2m-1\right)>0\\\dfrac{m}{m-1}< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>1\\m< \dfrac{1}{2}\end{matrix}\right.\\0< m< 1\end{matrix}\right.\) \(\Rightarrow0< m< \dfrac{1}{2}\)
đặt x^2 = y => y > = 0
phương trình đc viết lại : y^2 + 2my + m+ 12 = 0 (2)
để pt có 1 nghiệm thì pt 2 phải có 1 nghiệm = 0 và 1 nghiệm nhỏ hơn hoặc bằng 0
để pt có 2 nghiệm => pt (2) có 2 nghiệm trái dấu hoặc có nghiệm kép dương
để pt có 3 nghiệm => pt(2) có 1 nghiệm dương và 1 nghiệm bằng 0
để pt có 4 nghiệm => pt 2 phải có 2 nghiệm dương phân biệt