(3. 4x - 3).(x3 - 125) = 0
Giúp mình với ạ! ☺
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(4x-3)(2x-5) +(3-4x)(x-1)=0
(4x-3)(2x-5)-(4x-3)(x-1)=0
(4x-3)(2x-5-x+1)=0
(4x-3)(x-4)=0
4x-3=0 hoặc x-4=0
x=\(\frac{3}{4}\)hoặc x=4
Tìm x:
a) x3 +3x2 - 10x = 0
b) x3 - 5x2 - 14x =0
c) x3 + 5x2- 24x =0
Giải giúp mình với ạ !
Mình cảm ơn !
x3+3x2-10x=0
=>x(3+3.2-10)=0
=>x=0
x3-5x2-14x=0
=>x(3-5.2-14)=0
=>x=0
x3+5x2-24x=0
=>x(3+5.2-24)=0
=>x=0
Câu a)
\(x^3+3x^2-10=0\Rightarrow x\left(x^2+3x-10\right)=0\Rightarrow x\left(x^2-2x+5x-10\right)=0\Rightarrow x\left(x\left(x-2\right)+5\left(x-2\right)\right)=0\Rightarrow x\left(x+5\right)\left(x-2\right)=0\)
\(\Rightarrow x=0;x=5;x=2\)
2: \(ax+ay+bx+by\)
\(=a\left(x+y\right)+b\left(x+y\right)\)
\(=\left(x+y\right)\left(a+b\right)\)
3: \(x\left(x-2y\right)-x+2y\)
\(=x\left(x-2y\right)-\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x-1\right)\)
a) x(4x + 2) = 4x2 - 14
⇔ 4x2 + 2x = 4x2 - 14
⇔ 4x2 - 4x2 + 2x = -14
⇔ 2x = -14
⇔ x = -7
Vậy tập nghiệm S = ......
b) (x2 - 9)(2x - 1) = 0
⇔ x2 - 9 = 0 hoặc 2x - 1 = 0
⇔ x2 = 9 hoặc 2x = 1
⇔ x = 3 hoặc -3 hoặc x = \(\dfrac{1}{2}\)
Vậy .......
c) \(\dfrac{3}{x-2}\) + \(\dfrac{4}{x+2}\) = \(\dfrac{x-12}{x^2-4}\)
⇔ \(\dfrac{3}{x-2}\) + \(\dfrac{4}{x+2}\) = \(\dfrac{x-12}{\left(x-2\right)\left(x+2\right)}\)
ĐKXĐ: x - 2 ≠ 0 và x + 2 ≠ 0
⇔ x ≠ 2 và x ≠ -2MSC (mẫu số chung): (x - 2)(x + 2)Quy đồng mẫu hai vế và khử mẫu ta được:3x + 6 + 4x - 8 = x - 12⇔ 3x + 4x - x = 8 - 6 - 12⇔ 6x = -10⇔ x = \(-\dfrac{5}{3}\) (nhận)Vậy ........\(x^2+4x+y^2-2xy+x^2+4=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x+2\right)^2=0\)
vì \(\left(x-y\right)^2\ge0;\left(x+2\right)^2\ge0\)nên
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x-y=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\y=-2\end{cases}\Rightarrow}x=y=-2}\)
Bài làm:
Ta có: \(4x^2-4x-3=0\)
\(\Leftrightarrow\left(4x^2-4x+1\right)-4=0\)
\(\Leftrightarrow\left(2x-1\right)^2-2^2=0\)
\(\Leftrightarrow\left(2x-3\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3=0\\2x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=-\frac{1}{2}\end{cases}}\)
Ta có : \(4x^2-4x-3=0\)
\(\Leftrightarrow\left(4x^2-4x+1\right)-4=0\)
\(\Leftrightarrow\left(2x-1\right)^2=4\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=2\\2x-1=-2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{3}{2}\\x=-\frac{1}{2}\end{cases}}\)
Vậy \(x\in\left\{\frac{3}{2};-\frac{1}{2}\right\}\)
\(\left(3.4^x-3\right).\left(x^3-125\right)=0\\ \rightarrow\left[{}\begin{matrix}3.4^x-3=0\\x^3-125=0\end{matrix}\right.\\ \rightarrow\left[{}\begin{matrix}3.4^x=3\\x^3=125\end{matrix}\right.\)
\(\rightarrow\left[{}\begin{matrix}4^x=1=4^0\\x^3=5^3\end{matrix}\right.\\ \rightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
\(\left(3\cdot4^x-3\right)\left(x^3-125\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3\cdot4^x-3=0\\x^3-125=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3\left(4^x-1\right)=0\\x^3-5^3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}4^x=1\\x=5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)