Giải phương trình sau bằng phương pháp cộng đại số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Nhân hai vế pt 2 với 3 để hệ số của y bằng nhau)
(Trừ từng vế hai phương trình)
Phương trình 0x = 0 nghiệm đúng với mọi x.
Vậy hệ phương trình có vô số nghiệm dạng (x ∈ R).
(Các phần giải thích học sinh không phải trình bày).
(Vì hệ số của y ở 2 pt đối nhau nên cộng từng vế của 2 pt).
Vậy hệ phương trình có nghiệm duy nhất (2; -3).
(Chia hai vế pt 2 cho √2 để hệ số của y đối nhau)
(Hệ số của y đối nhau nên cộng từng vế của 2 pt)
Vậy hệ phương trình có nghiệm duy nhất
(Nhân hai vế pt 1 với 2, pt 2 với 3 để hệ số của y đối nhau)
(Hệ số của y đối nhau nên cộng từng vế hai phương trình).
Vậy hệ phương trình có nghiệm duy nhất (-1; 0).
(Các phần giải thích học sinh không phải trình bày).
(Chia hai vế của pt 2 cho √2 để hệ số của x bằng nhau)
(Trừ từng vế của hai phương trình)
Vậy hệ phương trình có nghiệm duy nhất
3x - 2y = 5 ⇔ 6x - 4y = 10
và 2x + 3y = 12 ⇔ 6x + 9y = 36
⇔ 13y = 26
và 2x + 3y = 12
⇔ y = 2
và 2x + 3.2 = 12
⇔ y = 2
và 2x = 6
⇔ y = 2
và x = 3
Vậy S = {(3; 2)}