\(3^{n+2}-2^{n+2}+3^n-2^nchia\) hết cho 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
24^54.54^24.2^10=(2^3.3)^54.(3^3.2)^24...
=(2^3)^54.3^54.(3^3)^24.2^24.2^10
= 2^162.2^24.2^10.3^54.3^72
=2^196.3^126
72^63=(2^3.3^2)^63
=(2^3)^63(.3^2)^63=2^189.3^126
vì 2^196.3^126 chia hết 2^189.3^126
=>24^54.54^24.2^10 chia hết 72^63
Đề là vầy đúng không bạn \(5^{n+3}-2^{n+3}+2^{n+1}-5^{n+2}+2^n\)
\(=\left(5^{n+3}-5^{n+2}\right)-\left(2^{n+3}-2^{n+1}-2^n\right)\)
\(=5^{n+2}\left(5-1\right)-2^n\left(2^3-2-1\right)\)
\(=5^{n+2}.4-2^n\left(8-2-1\right)\)
\(=5^{n+1}.2.2.5-2^{n-1}.2.5\)
\(=5^{n+1}.2.10-2^{n-1}.10\)
do \(5^{n+1}.2.10\)chia hết cho 10 với mọi n \
\(2^{n-1}.10\)chia hết cho 10 với mọi n
suy ra \(5^{n+1}.2.10-2^{n-1}.10\)chia hết cho 10 với mọi n
suy ra \(5^{n+3}-2^{n+3}+2^{n+1}-5^{n+2}+2^n\)chia hết cho 10 với mọi n
Bạn có ghi nhầm vị trí không,vì số tận cùng =5 không bào giờ chia hết cho 2.Mình nghĩ là 65* đúng hơn
a)N chia hết cho 2
=>* thuộc tập hợp 0,2,4,6,8
b)N chia hết cho 5
=>* thuộc tập hợp 0,5
c)N chia hết cho 2,5
=>*=0
CHÚC BẠN HỌC TỐT
Bài này dễ thôi mà bạn.
Bạn chỉ cần xét 2 trường hợp là n lẻ và n chẵn (đơn giản thôi)
Mk gợi ý cách lm rồi đó.
Chúc bn học tốt.
3n2 + n = n.(3n + 1)
Xét n chẵn (n = 2k , k thuộc N)
=> 2k.(3.2k + 1) chia hết cho 2 (1)
Xét n lẻ (n = 2k + 1 , k thuộc N)
=> 3(2k + 1) lẻ
=> 3(2k + 1) + 1 chẵn
<=> 3(2k + 1) + 1 chia hết cho 2
=> n(3n + 1) chia hết cho 2 (2)
Từ (1) và (2)
=> Với mọi n thuộc N , thì 3n2 + n chẵn
Ta có:
4n+3 +4n+2 -4n+1 -4n
=4n-1 .44 + 4n-1 . 43 - 4n-1 . 42 - 4n-1 .4
=4n-1 . (44 +43 - 42 -4)
=4n-1 . 300 : 300
= 4n+3 + 4n+2 -4n+1 -4n \(⋮\) 300 (ĐPCM)
Đặt A=4^{n+3}+4^{n+2}-4^{n+1}-4^n
A= 4^n-1(4^4+4^3-4^2-4)
A=4^n-1.300⋮300
k cho mik nha học tốt.
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n.3^2-2^{n-1}.2^3+3^n-2^{n-1}.2\)
\(=\left(3^n.3^2+3^n\right)-\left(2^{n-1}.2^3+2^{n-1}.2\right)\)
\(=3^n.\left(9+1\right)-2^{n-1}.\left(8+2\right)\)
\(=3^n.10-2^{n-1}.10\)
\(=10.\left(3^n-2^{n-1}\right)\)
Mà \(10.\left(3^n-2^{n-1}\right)⋮10\)
\(\Rightarrow3^{n+2}-2^{n+2}+3^n-2^n⋮10\) (đpcm)
Vậy \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\)