so sanh A va B
A= (2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)
B=2^32
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(A=2015.2017=\left(2016-1\right)\left(2016+1\right)=2016^2-1\)
Do \(2016^2>2016^2-1\)
\(\Rightarrow B>A\)
b ) \(C=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(=2^{32}-1< 2^{32}=D\)
Vậy \(C< D\)
so sánh :a)A=2015.2017 va B=20162
Ta có: A = 2015.2017 = (2016-1)(2016+1)
= 20162-1<20162
=> A < B
B = (3 + 1).(32 + 1).(34 + 1).(38 + 1).(316 + 1)
2B = (3 - 1).(3 + 1).(32 + 1).(34 + 1).(38 + 1).(316 + 1)
= (32 - 1).(32 + 1).(34 + 1).(38 + 1).(316 + 1)
= (34 - 1).(34 + 1).(38 + 1).(316 + 1)
= (38 - 1).(38 + 1).(316 + 1)
= (316 - 1).(316 + 1)
= 332 - 1
Vậy A = B
Ta có : \(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1=A-1\)
Vậy B < A
Ax(2-1)=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)=(2^4-1)(2^4+1)(2^8+1)(2^16+1)=(2^8-1)(2^8+1)(2^16+1)=(2^16-1)(2^16+1)=2^32-1
Vậy A=B
Áp dụng hằng đẵng thức A^2-B^2 đó bạn
what the fuck