bài1 tg ABC vuông tại A ,M là cạnh huyền BC ; D, E là chân đường vuông góc AB, AC a) so sánh AM và DE b) Gọi I là trung điểm DE khi M di chuyển trên BC thì điểm I di chuyển trên đoạn nào vì sao c) tìm vị trí M để BC ngắn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét t/g AHB và t/g AHC có:
ABH = ACH = 70o (gt)
AB = AC (gt)
Do đó, t/g AHB = t/g AHC ( cạnh huyền góc nhọn) (đpcm)
b) t/g AHB = t/g AHC (câu a) => CAH = BAH (2 góc tương ứng)
=> AH là phân giác BAC (đpcm)
Xét tg ABC và tg DEF ta có
góc A=góc D(90 độ)
BC=EF
AB=DE
=>tgDEF=tgABC(c.g.c)
a: \(AH=2\sqrt{6}\left(cm\right)\)
\(AB=2\sqrt{10}\left(cm\right)\)
\(AC=2\sqrt{15}\left(cm\right)\)
a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AH^2=HB\cdot HC\\AC^2=CH\cdot BC\\AB^2=BH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=2\sqrt{6}\left(cm\right)\\AC=2\sqrt{15}\left(cm\right)\\AB=2\sqrt{10}\left(cm\right)\end{matrix}\right.\)
Tam giác ABC vuông cân tại A nên \(\widehat A = 90^\circ ;\widehat B = \widehat C; AB = AC\).
Tổng ba góc trong một tam giác bằng 180° nên \(\widehat B = \widehat C = 90:2 = 45^\circ \).
Xét tam giác ABM và tam giác ACM có:
AB = AC
AM chung
BM = CM
\(\Rightarrow \Delta ABM = \Delta ACM\) (c.c.c)
\(\Rightarrow \widehat {BAM} = \widehat {CAM}\) (2 góc tương ứng)
Mà \(\widehat {BAM} + \widehat {CAM}=\widehat{BAC}=90^0\)
\(\Rightarrow \widehat {BAM} = \widehat {CAM} = 90:2 = 45^\circ \).
Xét tam giác MAB: \(\widehat {MBA} = \widehat {BAM} = 45^\circ \Rightarrow \widehat {BMA} = 90^\circ ;MB = MA\).
Vậy tam giác MAB vuông cân tại M.
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
=>ADME là hình chữ nhật
=>AM=DE
b: ADME là hình chữ nhật
=>AM cắt DE tại trung điểm của mỗi đường
=>I là trung điểm của AM
Gọi H,K lần lượt là trung điểm của AB,AC
Xét ΔABC có
H,K lần lượt là trung điểm của AB,AC
=>HK là đường trung bình
=>HK//BC và HK=BC/2
Xét ΔAMB có
I,H lần lượt là trung điểm của AM,AB
=>IH là đường trung bình
=>IH//MB và IH=MB/2
=>IH//BC
mà KH//BC
nên I,K,H thẳng hàng
=>I di chuyển trên đoạn KH là đường trung bình của ΔABC
bạn ơi thiếu câu c kìa