cho \(x+y=2\)
chúng minh \(x.y\le1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(0\le x;y\le1\) ta có:
\(\frac{x}{\sqrt{y+3}}+\frac{y}{\sqrt{x+3}}\ge\frac{x}{\sqrt{1+3}}+\frac{y}{\sqrt{1+3}}=\frac{x+y}{2}\)
Dấu "=" xảy ra <=> x = y = 1
Có: \(0\le x;y\le1\)
=> \(0\le x^2\le x\le1;0\le y^2\le y\le1\)
\(\left(\frac{x}{\sqrt{y+3}}+\frac{y}{\sqrt{x+3}}\right)^2\le2\left(\frac{x^2}{y+3}+\frac{y^2}{x+3}\right)\le2\left(\frac{x}{x+y+2}+\frac{y}{x+y+2}\right)\)
\(=2\left(\frac{x+y+2}{x+y+2}-\frac{2}{x+y+2}\right)\le2\left(1-\frac{2}{1+1+2}\right)=1\)
=> \(\sqrt{\frac{x}{\sqrt{y+3}}+\frac{y}{\sqrt{x+3}}}\le1\)
Dấu "=" xảy ra x<=> = y =1
\(VT=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{4039}{2xy}\)
\(VT\ge\dfrac{4}{x^2+y^2+2xy}+\dfrac{4039}{2.\dfrac{1}{4}\left(x+y\right)^2}=\dfrac{8082}{\left(x+y\right)^2}\ge\dfrac{8082}{1^2}=8082\)
vì trong 3 số x,y,z có ít nhất là 2 số cùng dấu
giả sử \(x,y\le0\)\(\Rightarrow z=-\left(x+y\right)\ge0\)
Mà \(-1\le x,y,z\le1\)nên \(x^2\le\left|x\right|;y^4\le\left|y\right|;z^6\le\left|z\right|\)
\(\Rightarrow x^2+y^4+z^6\le\left|x\right|+\left|y\right|+\left|z\right|=-x-y+z=-\left(x+y\right)+z=2z\le2\)
Dấu " = " xảy ra chẳng hạn x = 0 ; y = -1; z = 1
Từ điều kiện đề bài ta có:
\(x^2,y^2,z^2\le1\)
Trong 3 số x, y, z có 2 số cùng dấu: Giả sử là x,y (các trường hợp khác làm tương tự)
\(\Rightarrow xy\ge0\)
Ta có:
\(x^2+y^4+z^6\le x^2+y^2+z^2\le z^2+\left(x^2+2xy+y^2\right)=2z^2\le2\)
Dấu = xảy ra khi x = 0; y = 1; z = - 1.
Vì \(x+y+z=0.\)
\(\Rightarrow x+y=-z.\)
Ta có:
\(-1\le x\le1;-1\le y\le1;-1\le z\le1.\)
\(\Leftrightarrow x^2;y^2;z^2\le1\)
Trong 3 số x ; y ; z có ít nhất 2 số cùng dấu (giả sử là x ; y). Ta có:
\(xy\ge0\)
\(\Rightarrow2xy\ge0\)
Có:
\(x^2+y^4+z^6=x^2+y^2.y^2+z^2.z^2.z^2\)
\(\Rightarrow x^2+y^4+z^6\le x^2+y^2+z^2\) (1).
Ta phải chứng minh \(x^2+y^2+z^2\le2.\)
Có:
\(x^2+y^2+z^2\le x^2+y^2+z^2+2xy.\)
\(\Rightarrow x^2+y^2+z^2\le\left(x+y\right).2+z^2\)
\(\Rightarrow x^2+y^2+z^2\le\left(-z\right).2+z^2\)
\(\Rightarrow x^2+y^2+z^2\le2z^2\le2\) (2).
Từ (1) và (2) \(\Rightarrow x^2+y^4+z^6\le2\left(đpcm\right).\)
Chúc em học tốt!
a. x-3=xy+2y => x-3=y.(x+2)
=> y=\(\frac{x-3}{x+2}=\frac{x+2-5}{x+2}=1-\frac{5}{x+2}\)
Để y là số tự nhiên thì 5 chia hết cho x+2
=> x+2 thuộc Ư(5) => x+2 thuộc {1;5}
Lại có để y là số tự nhiên thì 1>=5/(x+2)
=> 5/(x+2)=1=> x+2=5=> x=3
=> y=0
Vậy (x;y)=(3;0)
c. (2xy-6x)+y=13
=> 2x(y-3)+(y-3)=10
=> (y-3)(2x+1)=10=1.10=10.1=2.5=5.2
Mà 2x+1 là số lẻ => 2x+1 thuộc {1;5}
• 2x+1=1 thì y-3=10 => x=0; y=13
• 2x+1=5 thì y-3=2 => x=2; y=5
Ta có \(x+y\le1\Leftrightarrow1-x\ge y>0\Leftrightarrow0< x< 1\)
Giả sử \(x^2-\dfrac{3}{4x}-\dfrac{x}{y}\le-\dfrac{9}{4}\)
\(\Leftrightarrow4x^2+9\le\dfrac{3}{x}+\dfrac{4x}{y}\\ \Leftrightarrow\dfrac{4x}{1-x}+\dfrac{3}{x}\ge4x^2+9\\ \Leftrightarrow\dfrac{4x^2+3\left(1-x\right)-x\left(4x^2+9\right)\left(1-x\right)}{x\left(1-x\right)}\ge0\\ \Leftrightarrow\dfrac{4x^4-4x^3+13x^2-12x+3}{x\left(1-x\right)}\ge0\\ \Leftrightarrow\dfrac{\left(x^2+3\right)\left(2x-1\right)^2}{x\left(1-x\right)}\ge0\)
Vì \(x>0;1-x>0\) nên BĐT trên luôn đúng
Vậy ta được đpcm
Dấu \("="\Leftrightarrow x=y=\dfrac{1}{2}\)