64.24-(3.4)12+64:64
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{5}{1.2}+\frac{5}{2.3}+\frac{5}{3.4}+...+\frac{5}{x\left(x+1\right)}=\frac{64}{13}\)
\(\Leftrightarrow5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{64}{13}\)
\(\Leftrightarrow1-\frac{1}{x+1}=\frac{64}{13}\div5\)
\(\Leftrightarrow1-\frac{1}{x+1}=\frac{64}{65}\)
\(\Leftrightarrow\frac{1}{x+1}=1-\frac{64}{65}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{65}\)
\(\Rightarrow x+1=65\Rightarrow x=65-1=64\)
\(\text{Vậy }x=64\)
Gọi 1/1.2 + 1/3.4 + ... + 1/63.64 là B
Ta có:
B= 1/1.2 + 1/3.4 + ... + 1/63.164
B=1-1/2+1/3-1/4+...+1/63-1/64
=1+1/2+1/3+1/4+...+1/63+1/64 - 2.(1/2+1/4+1/6+...+1/64)
=1+1/2+1/3+1/4+...+1/63+1/64-1-1/2-1/3-...-1/32
=1/33+1/34+1/35+...+1/64
=(1/33+1/64)+(1/34+1/63)+...+(1/48+1/49)
=97/33.64 + 97/34.63 + .... + 97/48.49
=97(1/33.64+1/34.63+...+1/48.49)
=97k
Thay vào B vào A ta được
97k.33.34.35...64 chia hết cho 97
vậy A chia hết 97
Gọi 1/1.2 + 1/3.4 + ... + 1/63.64 là B Ta có: B= 1/1.2 + 1/3.4 + ... + 1/63.164 B=1-1/2+1/3-1/4+...+1/63-1/64 =1+1/2+1/3+1/4+...+1/63+1/64 - 2.(1/2+1/4+1/6+...+1/64) =1+1/2+1/3+1/4+...+1/63+1/64-1-1/2-1/3-...-1/32 =1/33+1/34+1/35+...+1/64 =(1/33+1/64)+(1/34+1/63)+...+(1/48+1/49) =97/33.64 + 97/34.63 + .... + 97/48.49 =97(1/33.64+1/34.63+...+1/48.49) =97k Thay vào B vào A ta được97k.33.34.35...64 chia hết cho 97 vậy A chia hết 97
a)-(23+17-64)-(-24)
=-23-17+64+24
=(-23-17)+(64+24)
=-40+88
=48
b)(12+64-13)-(23-26-27)
=12+64-13-23+26+27
=(12-23)+(64+26)-(13-27)
=-11+90+14
=79+14
=93
5^2x-1=5^3.5^4
5^2x-1=5^7
=>2x-1=7
còn lại bn lm tiếp
Câu b hình như bn vik sai đề bài , đề bài đúng phải thế này :
7^x-3.4=296
7^x-12=296
7^x =296+12
7^x = 308
7^x = 7^3
=>x=3
c) 2^x.2^x+3=64^2:2^5
(2^x)^2 +3 = (2^6)^2 : 2^5
(2^x)^2 +3 = 2^12 : 2^5
(2^x.2) +3= 2^7
a) Ta có: \(\left(2^2\right)^3\cdot4^5\)
\(=2^6\cdot2^{10}\)
\(=2^{16}=65536\)
b) Ta có: \(\left[\left(-4\right)^2\right]^2\cdot6\)
\(=16^2\cdot6\)
\(=256\cdot6=1536\)
c) Ta có: \(\frac{16}{25}\cdot\left(\frac{4}{5}\right)^3\)
\(=\left(\frac{4}{5}\right)^2\cdot\left(\frac{4}{5}\right)^3\)
\(=\left(\frac{4}{5}\right)^5\)
\(=\frac{1024}{3125}\)
d) Ta có: \(\left(\frac{121}{64}\right)^2\cdot\left(-\frac{64}{11}\right)^2\)
\(=\frac{121^2}{64^2}\cdot\frac{64^2}{11^2}\)
\(=11^2=121\)
e) Ta có: \(\left[\left(-3\right)^3\right]^3\cdot271:125\)
\(=\left(-27\right)^3\cdot\frac{271}{125}\)
\(=\frac{-5334093}{125}\)
\(6^4\cdot2^4-\left(3\cdot4\right)^{12}+6^4:6^4\)
\(=\left(2\cdot6\right)^4-12^{12}+6^{4-4}\)
\(=12^4-12^{12}+1\)