tìm a và b biết 2a+a=3b
Giải chi tiết ra giúp mình nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài, ta có:
0,2a=0,3b=0,4c và 2a+3b-5c=-1,8
\(\Rightarrow\frac{a}{0,2}=\frac{b}{0,3}=\frac{c}{0,4}\) và 2a+3b-5c=-1,8
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{a}{0,2}=\frac{b}{0,3}=\frac{c}{0,4}=\frac{2a+3b-5c}{2.0,2+3.0,3-5.0,4}=\frac{\left(-1,8\right)}{\left(-0,7\right)}=\frac{18}{7}\)
Vậy \(x=\frac{18}{35},y=\frac{27}{35},z=\frac{36}{35}\)
T mk nhé bạn ^...^ ^_^
Ta có : \(0,2a=0,3b=\frac{a}{0,3}=\frac{b}{0,2}\)
\(0,3b=0,4c=\frac{b}{0,4}=\frac{c}{0,3}\)
Quy đòng : \(\frac{a}{0,3}=\frac{b}{0,2};\frac{b}{0,4}=\frac{c}{0,3};\frac{a}{0,12}=\frac{b}{0,08}=\frac{c}{0,06}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
Làm tiếp đi
Lời giải:
Vì $a,b$ là số tự nhiên nên $2a+1,b-2$ là số nguyên
$(2a+1)(b-2)=12$ nên $2a+1$ là ước của $12$
Mà $2a+1$ là số tự nhiên lẻ nên $2a+1\in\left\{1;3\right\}$
Nếu $2a+1=1$ thì $b-2=12:1=12$
$\Rightarrow a=0; b=14$ (thỏa mãn)
Nếu $2a+1=3$ thì $b-2=12:3=4$
$\Rightarrow a=1; b=6$ (thỏa mãn)
a : b : c = 4 : 5 : 6 =>\(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}=\frac{2a}{8}=\frac{3b}{15}=\frac{2a+3b}{8+15}=\frac{58}{23}\Rightarrow\hept{\begin{cases}a=\frac{58}{23}.4=10\frac{2}{23}\\b=\frac{58}{23}.5=12\frac{14}{23}\\c=\frac{58}{23}.6=15\frac{3}{23}\end{cases}}\)
đề: tìm 2 số a và b biết
a+b=5 và 2a-b=4
mọi người giải giúp mình với ạ kém theo lời giải chi tiết nha
Ta có: \(a+b=5\Rightarrow a=5-b\)
Thay \(a=5-b\) vào \(2a-b=4\) ta có:
\(2\cdot\left(5-b\right)-b\)
\(\Rightarrow10-2b-b=4\)
\(\Rightarrow10-3b=4\)
\(\Rightarrow3b=10-4\)
\(\Rightarrow3b=6\)
\(\Rightarrow b=\dfrac{6}{3}=2\)
Lúc này ta tìm được \(a\):
\(a=5-b=5-2=3\)
Vậy: \(a=3,b=2\)
=>2ab-3a+b-9=0
=>b(2a+1)-3a-4,5-*4,5=0
=>b(2a+1)-1,5(2a+1)=4,5
=>(2a+1)(b-1,5)=4,5
=>(2a+1)(2b-3)=9
=>\(\left(2a+1;2b-3\right)\in\left\{\left(1;9\right);\left(3;3\right);\left(9;1\right)\right\}\)
=>\(\left(a,b\right)\in\left\{\left(0;6\right);\left(1;3\right);\left(4;2\right)\right\}\)
Bạn dùng phương pháp chặn `b` rồi tìm `a` nhé.
`8a^2 + 31b^2 = 2468 <=> 31b^2 <= 2468 <=> b^2 < 81 -> b = 1 -> 8.`
Từ đây tìm `a` theo `b` và nhớ thử lại nhé.
=>3b(4a-3)+20a-15=2820
=>(4a-3)(3b+5)=2820
=>a chia 4 dư 1, b chia 3 dư 2
Do đó: \(\left(a,b\right)\in\varnothing\)
Ta có: 2a+a=3b
\(\Rightarrow\)a(2+1)=3b
\(\Rightarrow\)3a=3b
\(\Rightarrow\)a=b
2a + a = 3b
3a=3b
=>a/b=1
vậy a=b và a , b thuộc Z