(2x- 5)2 = 49
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) `(2x+5)^3-(2x-5)^3-(120x^2+49)`
`=(2x+5-2x+5)[(2x+5)^2+(2x+5)(2x-5)+(2x-5)^2]-(120x^2+49)`
`=10(12x^2+25)-(120x^2+49)`
`=120x^2+250-120x^2-49`
`=201`
b) `(4-5x)^2-(3+5x)^2=(4-5x+3+5x)(4-5x-3-5x)=7.(-10x+1)=-70x+7`
Lời giải:
a.
$(2x+5)^3-(2x-5)^3-(120x^2+49)$
$=[(2x+5)-(2x-5)][(2x+5)^2+(2x+5)(2x-5)+(2x-5)^2]-(120x^2+49)$
$=10(4x^2+20x+25+4x^2-25+4x^2-20x+25)-(120x^2+49)$
$=10(12x^2+25)-(120x^2+49)=250-49=201$
b.
$(4-5x)^2-(3+5x)^2=[(4-5x)+(3+5x)][(4-5x)-(3+5x)]$
$=7(1-10x)$
\(\left(2x+5\right)^2-2\left(2x+5\right)\left(x-1\right)+\left(x+1\right)^2=49\)
<=>\(\left\{\left(2x-5\right)-\left(x-1\right)\right\}^2=49\)
<=> \(\left(2x-5-x+1\right)^2=49\)
<=> \(\left(x-4\right)^2=49\)
<=> \(\hept{\begin{cases}x-4=7\\x-4=-7\end{cases}}\)
<=> \(\hept{\begin{cases}x=11\\x=-3\end{cases}}\)
học tốt
a) \(\left(2x-5\right)^2=49\)
\(\left(2x-5\right)^2=\left(\pm7\right)^2\)
\(=>2x-5=7\) hoặc \(2x-5=-7\)
\(\cdot2x-5=7\) \(\cdot2x-5=-7\)
\(2x=5+7\) \(2x=-7+5\)
\(2x=12\) \(2x=-2\)
\(x=12:2\) \(x=-2:2\)
\(x=6\) \(x=-1\)
Vậy x=6 hoặc x=-1
b/ \(\left(2x+5\right)^2-\left(1-2x\right)^2=10\)
\(4x^2+20x+25-\left(1-4x+4x^2\right)=10\)
\(4x^2+20x+25-1+4x-4x^2=10\)
\(24x+24=10\)
\(24x=10-24\)
\(24x=-14\)
\(x=\frac{-14}{24}\)
\(x=\frac{-7}{12}\)
c/ \(\left(9-2x\right)^3=27\)
\(\left(9-2x\right)^3=3^3\)
\(9-2x=3\)
\(2x=9-3\)
\(2x=6\)
\(x=6:2\)
\(x=3\)
2x - 49 = 5 . 32
2x - 49 = 5 . 9
2x - 49 = 45
2x = 45 + 49
2x = 94
--> x = 94 : 2 = 47
Vậy x = 47
a) \(\Rightarrow\left(2x-3\right)^2=49\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
b) \(\Rightarrow\left(x-5\right)\left(2x+7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-\dfrac{7}{2}\end{matrix}\right.\)
c) \(\Rightarrow x\left(x-5\right)+2\left(x-5\right)=0\Rightarrow\left(x-5\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
a, ⇒ (2x - 3)2 = 49
⇒ (2x - 3)2 = \(\left(\pm7\right)^2\)
⇒ \(\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=10\\2x=-4\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
b, ⇒ 2x.(x - 5) + 7.(x - 5) = 0
⇒ (x - 5).(2x + 7) = 0
⇒ \(\left[{}\begin{matrix}x-5=0\\2x+7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\2x=-7\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-\dfrac{7}{2}\end{matrix}\right.\)
c, ⇒ x2 - 5x + 2x - 10 = 0
⇒ (x2 - 5x) + (2x - 10) = 0
⇒ x.(x - 5) +2.(x - 5) = 0
⇒ (x - 5).(x + 2)=0
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=5\end{matrix}\right.\)
(2x-5)2=49 = 72 = (-7)2
TH1: 2x - 5 = 7
=> 2x = 12
=> x = 6
TH2: 2x-5 = -7
=> 2x = -2
=> x = -1
\(\left(2x-5\right)^2=49\)
\(\left(2x-5\right)^2=7^2\)
\(\Rightarrow2x-5=7\)
\(\Rightarrow2x=7+5\)
\(\Rightarrow2x=12\)
\(\Rightarrow x=12:2\)
\(\Rightarrow x=6\)
****
\(\left(2x-3\right)^2=7^2\)
\(2x-3=7\)
\(2x=10\)
\(x=5\)
Vậy x=5
a: \(\left(2x-3\right)^2-49=0\)
\(\Leftrightarrow\left(2x+4\right)\left(2x-10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=5\end{matrix}\right.\)
3.|x+1|-2=4
3.|x+1|=4+2
3.|x+1|=6
|x+1|=6:3
|x+1|=2
Trường hợp 1 x+1=2
x=2-1
x=1
trường hợp 2
x+1=-2
x=(-2)-1
x=-3
==> x thuộc {1; -3}
k mk nha chúc học tốt
\((2x-5)^2=49\\\Rightarrow \left[\begin{array}{} 2x-5=7\\ 2x-5=-7 \end{array} \right. \\\Rightarrow \left[\begin{array}{} 2x=12\\ 2x=-2 \end{array} \right. \\\Rightarrow \left[\begin{array}{} x=6\\ x=-1 \end{array} \right.\)
\(Vậy:x\in\left\{-1;6\right\}\)
(2x-5)2=72
2x-5=7
2x=7+5
2x=12
x=6