CM: \(\sqrt{a+b}+\sqrt{a-b}< 2\sqrt{a},vớia,b,c>0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=6\sqrt{a}+\dfrac{1}{3}\sqrt{a}-3\sqrt{a}+\sqrt{7}=\dfrac{10}{3}\sqrt{a}+\sqrt{7}\)
b: \(=5a\cdot5b\sqrt{ab}+\sqrt{3}\cdot2\sqrt{3}\cdot ab\sqrt{ab}+9ab\cdot3\sqrt{ab}-5b\cdot9a\sqrt{ab}\)
\(=25ab\sqrt{ab}+12ab\sqrt{ab}+27ab\sqrt{ab}-45ab\sqrt{ab}\)
\(=19ab\sqrt{ab}\)
c: \(=\dfrac{\sqrt{ab}}{b}+\sqrt{ab}-\dfrac{a}{b}\cdot\dfrac{\sqrt{b}}{\sqrt{a}}\)
\(=\sqrt{ab}\left(\dfrac{1}{b}+1\right)-\dfrac{\sqrt{a}}{\sqrt{b}}\)
\(=\sqrt{ab}\)
d: \(=11\sqrt{5a}-5\sqrt{5a}+2\sqrt{5a}-12\sqrt{5a}+9\sqrt{a}\)
\(=-4\sqrt{5a}+9\sqrt{a}\)
a) \(\sqrt{4\left(a-3\right)^2}=2\left(a-3\right)=2a-6\)
b) \(\sqrt{a^2\left(a+1\right)^2}=a\left(a+1\right)=a^2+a\)
c) \(\sqrt{\dfrac{16a^4b^6}{128a^6b^6}}=\sqrt{\dfrac{1}{8a^2}}=\dfrac{1}{\sqrt{8}\left|a\right|}=\dfrac{1}{-\sqrt{8}a}=\dfrac{-\sqrt{8}}{8a}\)
a: \(\sqrt{4\left(a-3\right)^2}=2\cdot\left(a-3\right)=2a-6\)
b: \(\sqrt{a^2\left(a+1\right)^2}=a\left(a+1\right)=a^2+a\)
c: \(\dfrac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^6}}=\sqrt{\dfrac{16a^4b^6}{128a^6b^6}}=\sqrt{\dfrac{1}{8a^2}}=\sqrt{\dfrac{2}{16a^2}}=-\dfrac{\sqrt{2}}{4a}\)
Mk lấy KQ rút gọn của 💋Amanda💋 nha!
d/ \(M=\frac{\sqrt{a}-2}{\sqrt{a}+1}=\frac{\sqrt{a}+1-3}{\sqrt{a}+1}=1-\frac{3}{\sqrt{a}+1}\)
Có \(\sqrt{a}+1\ge1\Rightarrow\frac{3}{\sqrt{a}+1}\le3\)
\(\Rightarrow1-\frac{3}{\sqrt{a}+1}\ge1-3=-2\)
"="\(\Leftrightarrow a=0\)
a) Gõ link này nha: http://olm.vn/hoi-dap/question/1078496.html
\(A=\sqrt{9.3.3.16\left(1-a^2\right)}=3.3.4.\left|1-a\right|=36\left(a-1\right)\)
\(B=\frac{1}{a-b}a^2.\left|a-b\right|=\frac{a^2\left(a-b\right)}{a-b}=a^2\)
\(C=\sqrt{5.45.a^2}-3a=\sqrt{5^2.3^2.a^2}-3a=15\left|a\right|-3a=15a-3a=12a\)
\(D=\left(3-a\right)^2-\sqrt{\frac{2.180}{10}a^2}=\left(3-a\right)^2-6\left|a\right|\)
\(P=\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\)
\(\frac{2}{\sqrt{3}}P=\frac{2}{\sqrt{3}}.\sqrt{a+1}+\frac{2}{\sqrt{3}}.\sqrt{b+1}+\frac{2}{\sqrt{3}}.\sqrt{c+1}\)
\(\le\frac{\frac{4}{3}+a+1}{2}+\frac{\frac{4}{3}+b+1}{2}+\frac{\frac{4}{3}+c+1}{2}\)
\(=\frac{7}{2}+\frac{1}{2}=4\)
\(\Rightarrow P\le\frac{4.\sqrt{3}}{2}=2\sqrt{3}< 3,5\)
Bunyakovsky:
\(\sqrt{a+b}+\sqrt{a-b}\le\sqrt{2.2a}=2\sqrt{a}\)