tìm x
(x-3)(x-1)(x+1)(x+3)+15=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Do x ∈ Z và 0 < x < 3
⇒ x ∈ {1; 2}
2) Do x ∈ Z và 0 < x ≤ 3
⇒ x ∈ {1; 2; 3}
3) Do x ∈ Z và -1 < x ≤ 4
⇒ x ∈ {0; 1; 2; 3; 4}
1) PT \(\Leftrightarrow\dfrac{x+3}{15}=\dfrac{4}{15}\) \(\Rightarrow x+3=4\) \(\Rightarrow x=1\)
Vậy ...
2) Mạnh dạn đoán đề là \(\left(2x-5\right)\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-5=0\\x-3=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=3\end{matrix}\right.\)
Vậy ...
3) PT \(\Rightarrow3x-4-2x+5=3\)
\(\Rightarrow x=2\)
Vậy ...
4) PT \(\Rightarrow\left[{}\begin{matrix}2x+1=0\\\dfrac{1}{2}x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=2\end{matrix}\right.\)
Vậy ...
3) Ta có: \(\left(3x-4\right)-\left(2x-5\right)=3\)
\(\Leftrightarrow3x-4-2x+5=3\)
\(\Leftrightarrow x+1=3\)
hay x=2
Dễ mak
nhưng mik nhìn đề thấy dài quá nên ko muốn làm
hihi^_$
a. x.(x+3)-x2+15=0
=> x^2 + 3x - x^2 + 15 = 0
=> 3x + 15 = 0
=> 3x = -15
=> x = -5
vậy_
b. (2x-1)(x+3) - x(2x-6) =15
=> 2x^2 + 6x - x - 3 - 2x^2 + 6x = 15
=> x - 3 = 15
=> x = 18
vậy_
c. x3 -36x = 0
=> x(x^2 - 36) = 0
=> x = 0 hoặc x^2 - 36 = 0
=> x = 0 hoặc x^2 = 36
=> x = 0 hoặc x = 6 hoặc x = -6
vậy_
d. 6x2 + 6x =x2+2x+1
=> 6x(x + 1) = (x + 1)^2
=> 6x(x + 1) - (x + 1)^2 = 0
=> (x + 1)(6x - x - 1) = 0
=> (x + 1)(5x - 1) = 0
=> x = -1 hoặc 5x = 1
=> x = -1 hoặc x = 1/5
vậy_
e. x(3x+1)=1-9x2
=> x(3x + 1) = (1 - 3x)(1 + 3x)
=> x(3x + 1) - (1 - 3x)(1 + 3x) = 0
=> (3x + 1)(x - 1 + 3x) = 0
=> (3x + 1)(4x - 1) = 0
=> 3x + 1 = 0 hoặc 4x - 1 = 0
=> 3x = -1 hoặc 4x = 1
=> x = -1/3 hoặc x = 1/4
vậy_
a: \(3\left(x-3\right)-6x=0\)
=>\(3x-9-6x=0\)
=>-3x-9=0
=>3x+9=0
=>3x=-9
=>\(x=-\dfrac{9}{3}=-3\)
b: Đề thiếu vế phải rồi bạn
c: \(2\left(x-3\right)+3x=9\)
=>2x-6+3x=9
=>5x-6=9
=>5x=6+9=15
=>x=15/5=3
d: \(x\left(x-11\right)+2\left(x-11\right)=0\)
=>\(\left(x-11\right)\left(x+2\right)=0\)
=>\(\left[{}\begin{matrix}x-11=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=11\\x=-2\end{matrix}\right.\)
e: \(x\left(x+2\right)+8=x^2\)
=>\(x^2+2x+8=x^2\)
=>2x+8=0
=>2x=-8
=>x=-8/2=-4
f: \(8\left(x+1\right)+2x=-2\)
=>\(8x+8+2x=-2\)
=>10x=-2-8=-10
=>\(x=-\dfrac{10}{10}=-1\)
g: 12-3(x+2)=0
=>3(x+2)=12
=>x+2=12/3=4
=>x=4-2=2
a) Ta có: \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6\left(x^2+2x+1\right)=15\)
\(\Leftrightarrow-6x^2+12x+19+6x^2+12x+6=15\)
\(\Leftrightarrow24x+25=15\)
\(\Leftrightarrow24x=-10\)
hay \(x=-\dfrac{5}{12}\)
b) Ta có: \(2x^3-50x=0\)
\(\Leftrightarrow2x\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
c) Ta có: \(5x^2-4\left(x^2-2x+1\right)-5=0\)
\(\Leftrightarrow5x^2-4x^2+8x-4-5=0\)
\(\Leftrightarrow x^2+8x-9=0\)
\(\Leftrightarrow\left(x+9\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=1\end{matrix}\right.\)
d) Ta có: \(x^3-x=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
e) Ta có: \(27x^3-27x^2+9x-1=1\)
\(\Leftrightarrow\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot1+3\cdot3x\cdot1^2-1^3=1\)
\(\Leftrightarrow\left(3x-1\right)^3=1\)
\(\Leftrightarrow3x-1=1\)
\(\Leftrightarrow3x=2\)
hay \(x=\dfrac{2}{3}\)
1/ `|x|=10<=> x=\pm 10`
2/ `|x-8|=0<=>x-8=0<=>x=8`
3/ `7+|x|=12<=>|x|=5<=>x=\pm 5`
4/ `|x+1|=3`
$\Leftrightarrow\left[\begin{array}{1}x+1=3\\x+1=-3\end{array}\right.\\\Leftrightarrow\left[\begin{array}{1}x=3\\x=-4\end{array}\right.$
5/ `15-x=16-(14-42)`
`<=>15-x=16+28`
`<=>15-x=44`
`<=>x=-29`
6/ `210-(x-12)=168`
`<=>210-x+12=168`
`<=>222-x=168`
`<=>x=54`
-12(x-5)+7(3-x)=15
=> -12x + 60 + 21 - 7x = 15
=> -19x + 81 = 15
=> -19x = 15 - 81
=> -19x = -66
=> x = 66 : 9
=> x = 66/9
b, (x+1)(3-x)=0
=> x+1 = 0 hoặc 3-x = 0
=> x = 0-1 hoặc x = 3-0
=> x = -1 hoặc x = 3
vậy......
Ta có :-12(x-5)+7(3-x)=15
=> -12x + 60 + 21 - 7x = 15
=> -19x + 81 = 15
=> -19x = - 6
=> x = 6/19
\(\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+3\right)+15=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-9\right)+15=0\)
Đặt \(x^2-1=t\)nên \(pt\Leftrightarrow t\left(t-8\right)+15=0\)
\(\Leftrightarrow t^2-8t+15=0\)
\(\Leftrightarrow t^2-3t-5t+15=0\)
\(\Leftrightarrow t\left(t-3\right)-5\left(t-3\right)=0\)
\(\left(t-5\right)\left(t-3\right)=0\Rightarrow\orbr{\begin{cases}t-5=0\\t-3=0\end{cases}\Rightarrow\orbr{\begin{cases}t=5\\t=3\end{cases}}}\)
Với \(t=5\) thì \(x^2-1=5\Leftrightarrow x^2=6\Rightarrow\orbr{\begin{cases}x=\sqrt{6}\\x=-\sqrt{6}\end{cases}}\)
Với \(t=3\) thì \(x^2-1=3\Leftrightarrow x^2=4\Rightarrow\orbr{\begin{cases}x=-2\\x=2\end{cases}}\)
Vậy \(x\in\left\{-\sqrt{6};-2;2\sqrt{6}\right\}\)
(x-3)x-1)(x+1)(x+3)+15=0
<=>(x^2-9)(x^2-1)=-15
<=>x^4-10x^2-9=-15
<=>-(x^4+6x^2+9+4X^2)=-15