K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2017

\(k^{150}=\left(k^2\right)^{75};5^{225}=\left(5^3\right)^{75}=125^{75}\)

ta có: \(\left(k^2\right)^{75}< 125^{75}\Rightarrow k^2< 125\) mà k lớn nhất suy ra k2 lớn nhất => k2=144 => k=12

20 tháng 7 2017

k = 11 nha

15 tháng 2 2019

Vì \(x;y;z\inℕ^∗\) và \(x< y< z\)nên \(\hept{\begin{cases}x\ge1\\y\ge2\\z\ge3\end{cases}}\)

\(\Rightarrow0< \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{1}+\frac{1}{2}+\frac{1}{3}< 2\)

\(\Rightarrow0< k< 2\)

Mà k nguyên dương nên k = 1

Với k = 1 thì pt : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\) 

*Với x = 1 thì VT > VP với mọi y ; z nguyên dương

*Với x > 3 thì y > 4 và z > 5

\(\Rightarrow VT\le\frac{1}{3}+\frac{1}{4}+\frac{1}{5}< 1\)

=> pt vô nghiệm

Do đó x = 2 

\(\Rightarrow\frac{1}{2}+\frac{1}{y}+\frac{1}{z}=1\)

\(\Leftrightarrow\frac{1}{y}+\frac{1}{z}=\frac{1}{2}\)

\(\Leftrightarrow\frac{y+z}{yz}=\frac{1}{2}\)

\(\Leftrightarrow2y+2z=yz\)

\(\Leftrightarrow\left(2y-yz\right)+\left(2z-4\right)=-4\)

\(\Leftrightarrow y\left(2-z\right)+2\left(z-2\right)=-4\)

\(\Leftrightarrow\left(y-2\right)\left(2-z\right)=-4\)

\(\Leftrightarrow\left(y-2\right)\left(z-2\right)=4\)

Từ pt  \(\Rightarrow y\ne2\)

            => y > 2

Vì \(\hept{\begin{cases}y>2\\z\ge3\end{cases}\Rightarrow}\hept{\begin{cases}y-2>0\\z-2>0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}y-2=1\\z-2=4\end{cases}\left(h\right)\hept{\begin{cases}y-2=2\\z-2=2\end{cases}\left(h\right)\hept{\begin{cases}y-2=4\\z-2=1\end{cases}}}}\)

\(\Leftrightarrow\hept{\begin{cases}y=3\\z=6\end{cases}}\)(Do y < z )

Vậy \(\hept{\begin{cases}x=2\\y=3\\z=6\end{cases}}\)

AH
Akai Haruma
Giáo viên
5 tháng 4 2021

Lời giải:

$(x^2+x)(x^2+11x+30)+7=x(x+1)(x+5)(x+6)+7$

$=(x^2+6x)(x^2+6x+5)+7$

$=(x^2+6x)^2+5(x^2+6x)+7$

$=(x^2+6x+\frac{5}{2})^2+\frac{3}{4}\geq \frac{3}{4}$ với mọi $x\in\mathbb{R}$

Do đó $\frac{3}{4}\geq k$ nên $k_{\max}=\frac{3}{4}$

a) ko có a, b thỏa mãn

b) Giá trị lớn nhất của A = \(\frac{7}{6}\)

c) 16

d)  x = \(\frac{14}{3}\)

e) x=-1

g) n= 7

h) 

j) x=1

k) n=11

 

\(\left(ab+cd\right)^2=\left(ab\right)^2+\left(cd\right)^2=a^2b^2c^2d^2=ab.ab+cd.cd\ge k\)abcd

\(\Leftrightarrow Max\)\(k=15\)