K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Lời giải:

Ta sẽ đi CM đẳng thức tổng quát:

\((C^1_{2n})^2-(C^2_{2n})^2+(C^3_{2n})^2-....+(C^{2n-1}_{2n})^2-(C^{2n}_{2n})^2=C^n_{2n}+1\) với $n$ lẻ.

Theo nhị thức Newton ta có:

\((x^2-1)^{2n}=C^0_{2n}-C^1_{2n}x^2+C^2_{2n}x^4-....-C^n_{2n}x^{2n}+...+C^{2n}_{2n}x^{4n}\). Trong này, hệ số của $x^{2n}$ là $-C^n_{2n}$

Tiếp tục sử dụng nhị thức Newton:

\((x^2-1)^{2n}=(x+1)^{2n}(x-1)^{2n}=(C^0_{2n}+C^1_{2n}+C^2_{2n}x^2+...+C^{2n}_{2n}x^{2n})(C^0_{2n}x^{2n}-C^1_{2n}x^{2n-1}+C^2_{2n}x^{2n-2}-...+C^{2n}_{2n})\). Trong này, hệ số của $x^{2n}$ là

\((C^0_{2n})^2-(C^1_{2n})^2+(C^2_{2n})^2-.....+(C^{2n}_{2n})^2\)

Do đó:

\(-C^n_{2n}=(C^0_{2n})^2-(C^1_{2n})^2+(C^2_{2n})^2-.....+(C^{2n}_{2n})^2\)

\(\Leftrightarrow -C^n_{2n}=1-(C^1_{2n})^2+(C^2_{2n})^2-.....+(C^{2n}_{2n})^2\)

\(\Leftrightarrow (C^1_{2n})^2-(C^2_{2n})^2+...-(C^2_{2n})^2=1+C^n_{2n}\) 

Thay $n=1011$ ta có đpcm.

5 tháng 1 2021

dcvdx

26 tháng 3 2023

tổng 2 số là 2022 x 2 = 4044

số lớn là  ( 4044 - 2022 ) : 2 = 1011

vậy đáp án là b nhé

( đây là bài toán lớp 4 )

26 tháng 3 2023

Câu " C " nha

Tổng hai số là: 2022 x 2 = 4044

số lớn là : ( 4044 + 2022 ) : 2 = 3033

Đ/s : tự nha

24 tháng 2 2023

Tính chậm đc ko :v

24 tháng 2 2023

đề bài là tính nhanh mà

25 tháng 3 2023

Tổng hai số là:

2022 \(\times\) 2 = 4044

Ta có sơ đồ:

 loading...

Theo sơ đồ ta có: Số lớn: (4044 + 2022) : 2 = 3033

Chọn C. 3033

                  

                        

 

22 tháng 12 2022

loading...  

28 tháng 12 2023

25x+20223x+2022∣=2x+1011

�+20225−�+20223−�+20222=05x+20223x+20222x+2022=0

(15−13−12)(�+2022)=0(513121)(x+2022)=0

(�+2022)=0(x+2022)=0

14 tháng 1 2022

C

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

Lời giải:

Từ điều kiện đề bài suy ra:
$\frac{x}{y}=\frac{y}{z}=\frac{z}{x}$

$\Rightarrow (\frac{x}{y})^3=(\frac{y}{z})^3=(\frac{z}{x})^3=\frac{x}{y}.\frac{y}{z}.\frac{z}{x}=1$
$\Rightarrow \frac{x}{y}=\frac{y}{z}=\frac{z}{x}=1$

$\Rightarrow x=y=z$.

Do đó:

$\frac{(x+y+z)^{2022}}{x^{337}.y^{674}.z^{1011}}=\frac{(3x)^{2022}}{x^{337}.x^{674}.x^{1011}}=\frac{3^{2022}.x^{2022}}{x^{2022}}=3^{2022}$

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

Lời giải:

Từ điều kiện đề bài suy ra:
$\frac{x}{y}=\frac{y}{z}=\frac{z}{x}$

$\Rightarrow (\frac{x}{y})^3=(\frac{y}{z})^3=(\frac{z}{x})^3=\frac{x}{y}.\frac{y}{z}.\frac{z}{x}=1$
$\Rightarrow \frac{x}{y}=\frac{y}{z}=\frac{z}{x}=1$

$\Rightarrow x=y=z$.

Do đó:

$\frac{(x+y+z)^{2022}}{x^{337}.y^{674}.z^{1011}}=\frac{(3x)^{2022}}{x^{337}.x^{674}.x^{1011}}=\frac{3^{2022}.x^{2022}}{x^{2022}}=3^{2022}$

4 tháng 6 2023

 Ta có \(3n^3-1011⋮1008\)

\(\Leftrightarrow\left(3n^3-3\right)-1008⋮1008\) 

\(\Leftrightarrow3\left(n^3-1\right)⋮1008\) 

\(\Leftrightarrow n^3-1⋮336\)\(⋮48\) 

\(\Rightarrow\left(n-1\right)\left(n^2+n+1\right)⋮48\).

Do \(n^2+n+1\) là số lẻ với mọi \(n\inℤ\) nên suy ra được \(n-1⋮48\), đpcm.

4 tháng 6 2023

Giả sử n là số chẵn ta có: 3n3 là số chẵn ⇒ 3n3 - 1011 là số lẻ 

⇒ 3n3 - 1011 không chia hết cho 1008 vậy điều giả sử là sai 

⇒ n là số lẻ. Mặt khác ta cũng có:

3n3 - 1011 ⋮ 1008 ⇔ 3n3 - 3 -1008 ⋮ 1008 ⇔ 3n3 - 3 ⋮ 1008

⇔3(n3-1)⋮ 1008⇔ n3 - 1⋮ 336 ⇔ n3 - 1⋮ 48 ⇔(n-1)(n2+n+1)⋮48(1)

vì n là số lẻ (chứng minh trên) nên ta có: n2 + n + 1 là số lẻ 

⇔ n2 + n + 1 không chia hết cho 48 (2)

Kết hợp(1) và (2) ta có: n - 1 ⋮ 48 (đpcm)

 

 

1 tháng 6 2023

Ta có \(\sqrt{2022a+\dfrac{\left(b-c\right)^2}{2}}\) 

\(=\sqrt{2a\left(a+b+c\right)+\dfrac{b^2-2bc+c^2}{2}}\)

\(=\sqrt{\dfrac{4a^2+b^2+c^2+4ab+4ac-2bc}{2}}\)

\(=\sqrt{\dfrac{\left(2a+b+c\right)^2-4bc}{2}}\)

\(\le\sqrt{\dfrac{\left(2a+b+c\right)^2}{2}}\)

\(=\dfrac{2a+b+c}{\sqrt{2}}\).

Vậy \(\sqrt{2022a+\dfrac{\left(b-c\right)^2}{2}}\le\dfrac{2a+b+c}{\sqrt{2}}\). Lập 2 BĐT tương tự rồi cộng vế, ta được \(VT\le\dfrac{2a+b+c+2b+c+a+2c+a+b}{\sqrt{2}}\)

\(=\dfrac{4\left(a+b+c\right)}{\sqrt{2}}\) \(=\dfrac{4.1011}{\sqrt{2}}\) \(=2022\sqrt{2}\)

ĐTXR \(\Leftrightarrow\) \(\left\{{}\begin{matrix}ab=0\\bc=0\\ca=0\\a+b+c=1011\end{matrix}\right.\) \(\Leftrightarrow\left(a;b;c\right)=\left(1011;0;0\right)\) hoặc các hoán vị. Vậy ta có đpcm.