|1-\(\sqrt{23}\)|+23-\(\sqrt{23}\)-\(\left|-2023\right|^0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
what hell ?
Bạn giải hộ ai à?
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.vi diệu !
a) Ta có: \(A=\sqrt{23+6\sqrt{10}}-\sqrt{23-6\sqrt{10}}\)
\(=\sqrt{18+2\cdot3\sqrt{2}\cdot\sqrt{5}+5}-\sqrt{18-2\cdot3\sqrt{2}\cdot\sqrt{5}+5}\)
\(=\sqrt{\left(3\sqrt{2}+\sqrt{5}\right)^2}-\sqrt{\left(3\sqrt{2}-\sqrt{5}\right)^2}\)
\(=3\sqrt{2}+\sqrt{5}-3\sqrt{2}+\sqrt{5}\)
\(=2\sqrt{5}\)
b) Ta có: \(B=\left(\dfrac{2+\sqrt{2}}{\sqrt{2}+1}+1\right)\left(\dfrac{2-\sqrt{2}}{\sqrt{2}-1}-1\right)\)
\(=\left(\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}+1\right)\left(\dfrac{\sqrt{2}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}-1\right)\)
\(=\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)\)
=2-1=2
\(\left(2\sqrt{5}-\sqrt{3}\right)\left(23+2\sqrt{15}\right)-\left(2\sqrt{5}+\sqrt{3}\right)\left(23-2\sqrt{15}\right)\)
\(=40\sqrt{5}-3\sqrt{3}-40\sqrt{5}+3\sqrt{3}\)
\(=0\)
Số khá xấu. Bạn coi lại đề xem có viết nhầm biểu thức không?
Đặt \(x=t-\frac{1}{3}\)
\(\Rightarrow t=x+\frac{1}{3}=\sqrt[3]{\frac{23+\sqrt{513}}{108}}+\sqrt[3]{\frac{23-\sqrt{513}}{0108}}\)
\(\Leftrightarrow t^3=\frac{23+\sqrt{513}}{108}+\frac{23-\sqrt{513}}{108}+3.\sqrt[3]{\frac{23^2-513}{108^2}}.t\)
\(\Leftrightarrow t^3=\frac{23}{54}+\frac{t}{3}\)
\(\Leftrightarrow t^3-\frac{t}{3}+\frac{31}{54}=1\)
Ta lại có
\(A=2x^3+2x^2+1\)
\(\Leftrightarrow\frac{A}{2}=x^3+x^2+\frac{1}{2}\)
\(=\left(t-\frac{1}{3}\right)^3+\left(t-\frac{1}{3}\right)^2+\frac{1}{2}\)
\(=t^3-\frac{t}{3}+\frac{31}{54}=1\)
\(\Rightarrow A=2\)
PS. Bài này nha. Bài kia viết mờ mắt luôn nên ghi nhầm vài chỗ (giải bằng điện thoại chán quá)
\(x=\frac{1}{3}\left(\sqrt[3]{\frac{23+\sqrt{513}}{4}+\sqrt[3]{\frac{23-\sqrt{513}}{4}-1}}\right)\)
\(x=\frac{1}{3}\left(6,3733+6,3733-1\right)\)
\(x=\frac{1}{3}\left(12,7466-1\right)\)
\(x=\frac{1}{3}11,7466\)
\(x=\frac{1}{3}x11,7466\)
\(x=\frac{11,7466}{3}\)
\(x=3,9155\)
Lời giải:
$|1-\sqrt{23}|+23-\sqrt{23}-|-2023|^0=\sqrt{23}-1+23-\sqrt{23}-1$
$=23-2=21$