Cho tam giác XYZ vuông tại X, đường cao XK, XY là 12cm,XZ=20cm. Tính YK,XK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC vuông tại A ta có:
\(AC=\sqrt{BC^2-AB^2}=\sqrt{20^2-12^2}=16\left(cm\right)\)
\(\Rightarrow\left\{{}\begin{matrix}BH\cdot BC=AB^2\\HC\cdot BC=AC^2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=\dfrac{12^2}{20}=7,2\left(cm\right)\\HC=\dfrac{AC^2}{BC}=\dfrac{16^2}{20}=12,8\left(cm\right)\end{matrix}\right.\)
Áp dụng định lí Pytago vào ΔEKF vuông tại K, ta được:
\(EF^2=EK^2+KF^2\)
\(\Leftrightarrow KF^2=20^2-12^2=256\)
hay KF=16(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔFED vuông tại E có EK là đường cao ứng với cạnh huyền FD, ta được:
\(EF^2=FK\cdot FD\)
\(\Leftrightarrow FD=\dfrac{20^2}{16}=\dfrac{400}{16}=25\left(cm\right)\)
Áp dụng định lí Pytago vào ΔDEF vuông tại E, ta được:
\(FD^2=EF^2+ED^2\)
\(\Leftrightarrow ED^2=25^2-20^2=225\)
hay ED=15(cm)
Áp dụng hệ thức lượng trong tam giác vuông có:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\dfrac{1}{AB^2}=\dfrac{1}{AH^2}-\dfrac{1}{AC^2}=\dfrac{1}{225}\)
\(\Leftrightarrow AH^2=225\Rightarrow AH=15\) (cm)
\(HB=\sqrt{AB^2-AH^2}=\sqrt{15^2-12^2}=9\) (cm)
\(sinB=\dfrac{AH}{AB}=\dfrac{12}{15}=\dfrac{4}{5}\)
Vậy...
1:
BC=15+20=35cm
AD là phân gíac
=>AB/BD=AC/CD
=>AB/3=AC/4=k
=>AB=3k; AC=4k
AB^2+AC^2=BC^2
=>25k^2=35^2
=>k=7
=>AB=21cm; AC=28cm
AH=21*28/35=16,8cm
\(AD=\dfrac{2\cdot21\cdot28}{21+28}\cdot cos45=12\sqrt{2}\left(cm\right)\)
2:
BC=căn 12^2+16^2=20cm
HB=AB^2/BC=12^2/20=7,2cm
HC=20-7,2=12,8cm
a: Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{12}{20}=\dfrac{3}{5}\)
b: Xét ΔHAB vuông tại H và ΔBAC vuông tại B có
\(\widehat{HAB}\) chung
Do đó: ΔHAB~ΔBAC
=>\(\dfrac{AH}{AB}=\dfrac{AB}{AC}\)
=>\(AB^2=AH\cdot AC\)
Sửa đề: BH cắt AD tại I
d: Ta có: \(\widehat{HIA}+\widehat{IAH}=90^0\)(ΔIHA vuông tại H)
\(\widehat{BDA}+\widehat{BAD}=90^0\)(ΔBAD vuông tại B)
mà \(\widehat{IAH}=\widehat{BAD}\)
nên \(\widehat{HIA}=\widehat{BDA}\)
=>\(\widehat{HIA}=\widehat{BDI}\)
mà \(\widehat{HIA}=\widehat{BID}\)(hai góc đối đỉnh)
nên \(\widehat{BDI}=\widehat{BID}\)
=>ΔBDI cân tại B
\(a.\) Xét \(\Delta ABC:\)
AD là phân giác \(\widehat{BAC}\left(gt\right).\)
\(\Rightarrow\dfrac{BD}{CD}=\dfrac{AB}{AC}\) (T/c đường phân giác).
\(\Rightarrow\dfrac{BD}{CD}=\dfrac{12}{20}=\dfrac{3}{5}.\)
\(b.\) Xét \(\Delta ABC\) vuông tại B, BH là đường cao:
\(AB^2=AH.AC\) (Hệ thức lượng).
a)\(12^2+16^2=20^2\)(144+256=400)
\(\Rightarrow AB^2+AC^2=BC^2\)(định lý pytago)
\(\Rightarrow\Delta ABC\)vuông tại A
b)Xét tg ABC vuông tại A có đcao AH(cmt)
Ta có:AB.AC=BC.AH(Hệ thức lượng)
12.16=20.AH
192=20.AH
AH=192:20=9.6
c)cosB=AB/BC,cosC=AC/BC
\(\Rightarrow\frac{AB.AB}{BC}+\frac{AC.AC}{BC}\)
\(\Rightarrow\frac{AB^2}{BC}+\frac{AC^2}{BC}=\frac{\left(AB^2+AC^2\right)}{BC}\)
\(\Rightarrow\frac{BC^2}{BC}=\frac{20^2}{20}=20\)
\(\Rightarrow AB.cosB+AC.cosC=20\)
Áp dụng định lí Pytago vào tam giác XYZ vuông tại X
=> \(YZ=\sqrt{12^2+20^2}=4\sqrt{34}\)
Ta có: \(YZ.XK=XY.XZ\)
\(\Rightarrow4\sqrt{34}.XK=20.12\)
\(\Rightarrow XK=\dfrac{30\sqrt{34}}{17}\)
Áp dụng định lí Pytago vào tam giác XKY vuông tại K
\(\Rightarrow YK=\sqrt{12^2-\left(\dfrac{30\sqrt{34}}{17}\right)^2}=\dfrac{18\sqrt{34}}{17}\)