\(\frac{2x+1}{6}=\frac{24}{2x+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(A=\left(\frac{1+2x}{2.\left(2+x\right)}-\frac{x}{3.\left(x-2\right)}+\frac{2x^2}{3.\left(4-x^2\right)}\right).\frac{24-12x}{6+13x}\)
\(=\left[\frac{3.\left(1+2x\right)\left(2-x\right)-2x\left(x+2\right)+4x^2}{2.3.\left(x+2\right)\left(2-x\right)}\right].\frac{24-12x}{6+13x}\)
\(=\frac{6+9x-6x^2-2x^2-4x+4x^2}{6.\left(4-x^2\right)}.\frac{24-12x}{6+13x}\)
\(=\frac{6+5x-4x^2}{6.\left(4-x^2\right)}.\frac{12.\left(2-x\right)}{6+13x}\) \(=\frac{\left(6+5x-4x^2\right).2}{\left(x+2\right)\left(6+13x\right)}=\frac{12+10x-8x^2}{13x^2+32x+12}\)

Đề nghỉ ghi cái đề? @@ Rút gọn đúng ko?
\(Đkxđ:\hept{\begin{cases}x\ne\pm2\\x\ne-\frac{6}{13}\end{cases}}\)
\(A=\left[\frac{\left(1+2x\right)\left(x-2\right).3-2x\left(x+2\right)-4x^2}{6\left(x^2-4\right)}\right].\frac{12\left(2-x\right)}{6.13x}\)
\(=\left[\frac{3x-6+6x^2-12x-2x^2-4x-4x^2}{6\left(x^2-4\right)}\right].\frac{12\left(2-x\right)}{6+13x}\)
\(=\frac{13x+6}{6\left(x+2\right)\left(2-x\right)}.\frac{12\left(2-x\right)}{6+13x}\)
\(=\frac{2}{x+2}\)
\(A=\left(\frac{1+2x}{4+2x}-\frac{x}{3x-6}+\frac{2x^2}{12-3x^2}\right)\times\frac{24-12x}{6+13x}\)
\(=\left(\frac{1+2x}{2\left(2+x\right)}+\frac{x}{3\left(2-x\right)}+\frac{2x^2}{3\left(4-x^2\right)}\right)\times\frac{2.\left(12-x\right)}{6+13x}\)
\(=\left(\frac{\left(1+2x\right).3.\left(2-x\right)}{2.3.\left(2+x\right)\left(2-x\right)}+\frac{2x\left(2+x\right)}{2.3.\left(2-x\right)\left(2+x\right)}+\frac{2.2x^2}{2.3.\left(2-x\right)\left(2+x\right)}\right)\times\frac{2.\left(12-x\right)}{6+13x}\)
\(=\left(\frac{6+12x-3x-6x^2+4x+2x^2+4x^2}{6\left(2-x\right)\left(2+x\right)}\right)\times\frac{2\left(12-x\right)}{6+13x}\)
\(=\frac{6+13x}{6\left(2-x\right)\left(2+x\right)}\times\frac{2\left(12-x\right)}{6+13x}\)
\(=\frac{12-x}{\left(2-x\right)\left(2+x\right)}=\frac{12-x}{4-x^2}\)

\(\frac{1}{2x^2+10x+12}+\frac{1}{2x^2+14x+24}+\frac{1}{2x^2+18x+40}+\frac{1}{2x^2+22x+60}=\frac{1}{8}\)
<=> \(\frac{1}{2x^2+6x+4x+12}+\frac{1}{2x^2+6x+8x+24}+\frac{1}{2x^2+8x+10x+40}+\frac{1}{2x^2+12x+10x+60}=\frac{1}{8}\)
<=> \(\frac{1}{2x\left(x+3\right)+4\left(x+3\right)}+\frac{1}{2x\left(x+3\right)+8\left(x+3\right)}+\frac{1}{2x\left(x+4\right)+10\left(x+4\right)}+\frac{1}{2x\left(x+6\right)+10\left(x+6\right)}=\frac{1}{8}\)
<=> \(\frac{1}{\left(x+3\right)\left(2x+4\right)}+\frac{1}{\left(x+3\right)\left(2x+8\right)}+\frac{1}{\left(x+4\right)\left(2x+10\right)}+\frac{1}{\left(x+6\right)\left(2x+10\right)}=\frac{1}{8}\)
<=> \(\frac{1}{2\left(x+2\right)\left(x+3\right)}+\frac{1}{2\left(x+3\right)\left(x+4\right)}+\frac{1}{2\left(x+4\right)\left(x+5\right)}+\frac{1}{2\left(x+5\right)\left(x+6\right)}=\frac{1}{8}\)
<=> \(\frac{1}{2}.\left[\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}\right]=\frac{1}{8}\)
<=> \(\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}=\frac{1}{8}:\frac{1}{2}\)
<=> \(\frac{1}{x+2}-\frac{1}{x+6}=\frac{1}{4}\)
<=> \(\frac{4\left(x+6\right)-4\left(x+2\right)}{4\left(x+2\right)\left(x+6\right)}=\frac{\left(x+2\right)\left(x+6\right)}{4\left(x+2\right)\left(x+6\right)}\)
<=> \(4\left(x+6\right)-4\left(x+2\right)=\left(x+2\right)\left(x+6\right)\)
<=> \(4\left(x+6-x-2\right)=x^2+8x+12\)
<=> \(4.4=x^2+8x+12\)
<=> \(x^2+8x-4=0\)
<=> ...
Đến đây bạn tự giải tiếp. Mình bấm máy 570ES PLUS II thì ra nghiệm \(x\approx0,47\).

- Ta chứng minh bất đẳng thức phụ dưới đây: \(\frac{1}{\sqrt{x}\left(x+1\right)}=\frac{\sqrt{x}}{x\left(x+1\right)}=\sqrt{x}\left(\frac{1}{x}-\frac{1}{x+1}\right)=\sqrt{x}\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\right)\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x+1}}\right)\)\(=\left(1+\frac{\sqrt{x}}{\sqrt{x+1}}\right)\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\right)< 2\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\right)\)
Áp dụng : \(\frac{1}{\sqrt{1}.2}< 2.\left(1-\frac{1}{\sqrt{2}}\right)\)
\(\frac{1}{\sqrt{2}.3}< 2.\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)\)
...................................
\(\frac{1}{\sqrt{2015}.2016}< 2.\left(\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\right)\)
Cộng các BĐT trên với nhau được : \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2016\sqrt{2015}}< 2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\right)=2\left(1-\frac{1}{\sqrt{2016}}\right)< 2\left(1-\frac{1}{\sqrt{2025}}\right)=\frac{88}{45}\)
Từ đó suy ra đpcm
Cái ............... là gì vậy bn
\(\frac{2x+1}{6}=\frac{24}{2x+1}\)
Theo đề bài ta có:
\(\left(2x+1\right)\left(2x+1\right)=24.6=144\)
\(\Rightarrow\left(2x+1\right)^2=144\)
\(\Rightarrow2x+1=12\)
\(\Rightarrow2x=12-1\)
\(\Rightarrow2x=11\)
\(\Rightarrow x=\frac{11}{2}\)
\(\Rightarrow5,5\)
Vậy x = 5,5
Ta có: \(\frac{2x+1}{6}=\frac{24}{2x+1}\Rightarrow\left(2x+1\right)^2=24\times6=144\)
\(\Rightarrow2x+1=\sqrt{144}=12\)
\(\Rightarrow2x=12-1=11\Rightarrow x=\frac{11}{2}=5,5\)