32x + 2 = 9x + 3
biết x thuộc N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b. 16x + 1 = 32x - 2
16x - 32x = -2 -1
-16x = -3
x = \(\frac{3}{16}\)
\(a,\Rightarrow\left(4x-1\right)^2=25=5^2=\left(-5\right)^2\\ \Rightarrow\left[{}\begin{matrix}4x-1=5\\4x-1=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-1\end{matrix}\right.\\ b,\Rightarrow2^x\left(1+2^3\right)=144\\ \Rightarrow2^x=144:9=16=2^4\Rightarrow x=4\\ c,\Rightarrow3^{2x+3}=3^{2\left(x+3\right)}\\ \Rightarrow2x+3=2x+6\Rightarrow0x=3\left(vô.lí\right)\\ \Rightarrow x\in\varnothing\)
a) X^3-x^2-21x+45=0
x^3-3x^2+2x^2-6x-15x+45=0
x^2(x-3)+2x(x-3)-15(x-3)=0
(x-3)(x^2+2x-15)=0
(x-3)(x^2-3x+5x-15)=0
(x-3)[x(x-3)+5(x-3)]=0
(x-3)^2(x+5)=0
<=> x=3 hoặc x=-5
Câu 2 đề ko rõ lắm bn sửa lại đề để mk giải hộ nha
Bích Ngọc bạn xem lời giải dưới đây nhé :
X^3-x^2-21x+45=0\(\Leftrightarrow\)(x+5)(x^2-6x+9)=0
\(\Leftrightarrow\)(x+5)(x-3)^2=0
Rồi đó tới đây bạn tự tìm x nhé!
\(x^6+y^6=\left(x^2\right)^3+\left(y^2\right)^3=\left(x^2+y^2\right).\left(x^4-x^2y^2+y^4\right)\\ ---\\ 0,04-9x^2=\left(0,2\right)^2-\left(3x\right)^2=\left(0,2-3x\right)\left(0,2+3x\right)\\ ---\\ 32x^2-2\left(y-1\right)^2=2\left[16x^2-\left(y-1\right)^2\right]=2\left[\left(4x\right)^2-\left(y-1\right)^2\right]\\ =2\left(4x-y+1\right)\left(4x+y-1\right)\)
1)\(4x^2+32+64\)
\(\Leftrightarrow\left(2x\right)^2+32x+8^2\)
\(\Leftrightarrow\left(2x+8\right)^2\)
2) \(24-3y^2x=3\left(8-y^2x\right)\)
3) \(\left(x-12\right)^2-9\)
\(\Leftrightarrow\left(x-12-9\right)\left(x-12+9\right)\)
\(\Leftrightarrow\left(x-21\right)\left(x-3\right)\)
1. a) \(8x^3-32x=8x\left(x^2-4\right)=8x\left(x-4\right)\left(x+4\right)\)
b) \(y^3+64+\left(y+4\right)\left(y-16\right)=\left(y^3+4^3\right)+\left(y+4\right)\left(y-16\right)\)
\(=\left(y+4\right)\left(y^2-4y+16\right)+\left(y+4\right)\left(y-16\right)=\left(y+4\right)\left(y^2-4y+16+y-16\right)\)
\(=\left(y-4\right)\left(y^2-3y\right)=\left(y-4\right)y\left(y-3\right)\)
2) a)
\(4x^3-9x=0\)
\(\Leftrightarrow x\left(4x^2-9\right)=0\)
\(\Leftrightarrow x\left(2x+3\right)\left(2x-3\right)=0\)
<=> x=0 hoặc 2x+3=0 hoặc 2x-3=0
<=> x=0 hoặc x=-3/2 hoặc x=3/2
b) \(A=x^3-9x^2+27x-27=x^3-3.x^2.3+3.x.3^2-3^3=\left(x-3\right)^3\)
Tại x=203
A=(203-3)3=2003
Bài 1 :
a) \(8x^3-32x\)
\(=8x\left(x^2-4\right)\)
\(=8x\left(x-2\right)\left(x+2\right)\)
b) \(y^3+64+\left(y+4\right)\left(y-16\right)\)
\(=\left(y^3+4^3\right)+\left(y+4\right)\left(y-16\right)\)
\(=\left(y+4\right)\left(y^2-4y+16\right)+\left(y+4\right)\left(y-16\right)\)
\(=\left(y+4\right)\left(y^2-4x+16+y-16\right)\)
\(=\left(y+4\right)\left(y^2+y-4x\right)\)
Bài 2 :
a) \(4x^3-9x=0\)
\(x\left(4x^2-9\right)=0\)
\(x\left[\left(2x\right)^2-3^2\right]=0\)
\(x\left(2x-3\right)\left(2x+3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\2x-3=0\\2x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=\frac{3}{2}\\x=\frac{-3}{2}\end{cases}}}\)
P.s: ở trên dùng ngoặc vuông nhé
b) \(A=x^3-9x^2+27x-27\)
\(A=x^3-3\cdot x^2\cdot3+3\cdot x\cdot3^2-3^3\)
\(A=\left(x-3\right)^3\)
Thay x = 203 vào biểu thức ta có :
\(A=\left(203-3\right)^3\)
\(A=200^3\)
\(A=8000000\)
a) \(9x^2-1=\left(3x+1\right)\left(4x+1\right)\)
\(\Leftrightarrow\)\(\left(3x-1\right)\left(3x+1\right)-\left(3x+1\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\)\(\left(3x+1\right)\left(3x-1-4x-1\right)=0\)
\(\Leftrightarrow\)\(\left(3x+1\right)\left(-x-2\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}3x+1=0\\-x-2=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-\frac{1}{3}\\x=-2\end{cases}}\)
Vậy...
32x+2=9x+3
32x+2=[(3)2]x+3
32x+2=32x+3
=> 2x+2=2x+3
=> x ko tồn tại
x\(\in\)\(\Phi\)