Chứng minh :a^3+b^3=(a+b)x(a^2-ab+b^2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x+a).(x+b)=x2+bx+ax+ab=x2+(a+b)x+ab
b)(a+b+c)(a2+b2+c2-ab-bc-ca)
=a3+ab2+ac2-a2b-abc-a2c+a2b+b3+bc2-ab2-b2c-ac2+a2c+b2c+c3-abc-bc2-ac2
=a3+b3+c3-3ab
a) ( x + a) ( x + b) = x^2 + ( a + b )x + ab
Ta có vế trái bằng:
( x + a) ( x + b) = x2+xb+xa+ab= x2+(a+b)x+ab
Vậy vế trái bằng vế phải
ý b tương tự bạn nhé, bạn có thể triển khai vế trái hoặc thu gọn vế phải, cũng có thể triển khai cả hai vế
tick đúng cho mình nha
Bài 1:
Ta có:\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}=\dfrac{3a+b}{3c+d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{3a+b}{3c+d}\Rightarrow\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\)
Vậy từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\left(\text{Đ}PCM\right)\)
Bài 2:
Ta có:\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\)
Xét \(k^2=\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{ab}{cd}\)
Vậy từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{ab}{cd}\left(\text{đ}pcm\right)\)
Bài 3:
Ta có:\(\dfrac{2}{x}=\dfrac{3}{y}\Rightarrow\dfrac{y}{3}=\dfrac{x}{2}\)
Đặt \(\dfrac{y}{3}=\dfrac{x}{2}=k\)\(\Rightarrow\)y=3k
x=2k
Lại có xy=96
\(\Rightarrow2k3k=96\)
\(\Rightarrow6k^2=96\)
\(\Rightarrow k=\pm4\)
Với \(k=4\Rightarrow\left(x;y\right)=\left(8;12\right)\)
\(k=-4\Rightarrow\left(x;y\right)=\left(-8;-12\right)\)
Vậy ta tìm được 2 cặp x;y thỏa mãn yêu cầu đề bài là:
(x;y)=(8;12)
(x;y)=(-8;-12)
a)a2+b2+c2+3=2(a+b+c)
=>a2+b2+c2+1+1+1-2a-2b-2c=0
=>(a2-2a+1)+(b2-2b+1)+(c2-2c+1)=0
=>(a-1)2+(b-1)2+(c-1)2=0
=>a-1=b-1=c-1=0 <=>a=b=c=1
-->Đpcm
b)(a+b+c)2=3(ab+ac+bc)
=>a2+b2+c2+2ab+2ac+2bc -3ab-3ac-3bc=0
=>a2+b2+c2-ab-ac-bc=0
=>2a2+2b2+2c2-2ab-2ac-2bc=0
=>(a2- 2ab+b2)+(b2-2bc+c2) + (c2-2ca+a2) = 0
=>(a-b)2+(b-c)2+(c-a)2=0
Hay (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0
=>a-b hoặc b=c hoặc a=c
=>a=b=c
-->Đpcm
c)a2+b2+c2=ab+bc+ca
=>2(a2+b2+c2)=2(ab+bc+ca)
=>2a2+2b2+c2=2ab+2bc+2ca
=>2a2+2b2+c2-2ab-2bc-2ca=0
=>a2+a2+b2+b2+c2+c2-2ab-2bc-2ca=0
=>(a2-2ab+b2)+(b2-2bc+c2)+(a2-2ca+c2)=0
=>(a-b)2+(b-c)2+(a-c)2=0
Hay (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0
=>a-b hoặc b=c hoặc a=c
=>a=b=c
-->Đpcm
(a-b)2 = (a-b).(a-b)
= a2 - ab - ab + b2
= a2 - 2ab + b2 (đpcm)
a) Ta có:
\(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Leftrightarrow\dfrac{\left(a+b+c\right)^2}{9}\ge\dfrac{\left(ab+bc+ca\right)}{3}\)
\(\Leftrightarrow\dfrac{a+b+c}{3}\ge\sqrt{\dfrac{ab+bc+ca}{3}}\)
Đẳng thức xảy ra khi $a=b=c.$
b) BĐT \(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
Hay là \(2\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\),
đúng.
Đẳng thức xảy ra khi $a=b=c.$
c) \(\Leftrightarrow\dfrac{\left(x^2+2\right)^2}{x^2+1}\ge4\Leftrightarrow x^4+4x^2+4\ge4x^2+4\Leftrightarrow x^4\ge0\)
Đẳng thức xảy ra khi $x=0.$
d) Xét hiệu hai vế đi bạn.
Xét VP=(a+b)(a^2-ab+b^2)
=a^3+a^2.b-a^2.b-a.b^2+a.b^2+b^3
=a^3+b^3
Mk giai nhu vay ban co hieu ko???
\(\left(a+b\right)\left(a^2-ab+b^2\right)=a^3-a^2b+ab^2-ab^2\) \(+ba^2-ab^2+b^3=a^3+b^3\Rightarrowđpcm\)