mk tickkk cho:
CM từ đẳng thức ad=bc(c, d# 0)ta có thể suy ra a/c=b/d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có a/b=c/d nên ad=bc ( tính chất nhân chéo của phân số)
Trần Trương Quỳnh Hoa và câu hỏi tương tự có đấy, tick cho mình nha!
\(ad=bc=>ad:dc=bc:dc=>\frac{ad}{dc}=\frac{bc}{dc}=>\frac{a}{c}=\frac{b}{d}\)
\(ad=bc\Rightarrow\frac{ad}{cd}=\frac{bc}{cd}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Do ad = bc
=> \(\frac{ad}{cd}=\frac{bc}{cd}\)
=> \(\frac{a}{c}=\frac{b}{d}\left(đpcm\right)\)
Do ad = bc
\(\Rightarrow\frac{a}{d}=\frac{b}{c}\)
\(\Rightarrow ac=bd\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}\left(\text{đ}pcm\right)\)
Ta có: ad = bc; c ≠ 0; d ≠ 0 suy ra cd ≠ 0
Chia cả 2 vế cho cd. Suy ra:
\(ad=bc=>ad:dc=bc:dc=>\frac{ad}{dc}=\frac{bc}{dc}=>\frac{a}{c}=\frac{b}{d}\)
Ta có:
\(\frac{a}{c}=\frac{b}{d}\) \(=>\frac{ad}{cd}=\frac{bc}{cd}=>ad=bc\left(đpcm\right)\)
Từ \(ad=bc\) chia cả 2 vế cho cd \(\Rightarrow\frac{ad}{cd}=\frac{bc}{cd}\Rightarrow\frac{a}{c}=\frac{b}{d}\)