25 . ( -1/5) mũ 2 + 1/5 - 9 . ( -1/9)mũ 2 + 1/9 mũ 20
Cho mik xin lời giải chi tiết ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a, 3/4 - 5/4 :(x-1) =1/2`
`=> 5/4:(x-1)= 3/4 -1/2`
`=> 5/4:(x-1)= 3/4 - 2/4`
`=> 5/4:(x-1)= 1/4`
`=> x-1= 5/4 : 1/4`
`=> x-1=5`
`=>x=5+1`
`=>x=6`
__
`(1/2-x)^2 -2^2 =12`
`=> (1/2-x)^2 = 12+4`
`=> (1/2-x)^2= 16`
`=> (1/2-x)^2 =4^2`
\(\Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}-x=4\\\dfrac{1}{2}-x=-4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=\dfrac{9}{2}\end{matrix}\right.\)
__
`(1/2)^(2x-1) =1/16`
`=> (1/2)^(2x-1) = (1/2)^4`
`=> 2x-1=4`
`=> 2x=4+1`
`=>2x=5`
`=>x=5/2`
\(a,\dfrac{3}{4}-\dfrac{5}{4}:\left(x-1\right)=\dfrac{1}{2}\)
\(\dfrac{5}{4}:\left(x-1\right)=\dfrac{3}{4}-\dfrac{1}{2}\)
\(\dfrac{5}{4}:\left(x-1\right)=\dfrac{1}{4}\)
\(x-1=\dfrac{5}{4}:\dfrac{1}{4}\)
\(x-1=5\)
\(x=6\)
\(\left(\dfrac{1}{2}-x\right)^2-2^2=12\)
\(\left(\dfrac{1}{2}-x\right)^2-4=12\)
\(\left(\dfrac{1}{2}-x\right)^2=16\)
\(\left(\dfrac{1}{2}-x\right)^2=4^2hoặc\left(\dfrac{1}{2}-x\right)^2=\left(-4\right)^2\)
\(\dfrac{1}{2}-x=4hoặc\dfrac{1}{2}-x=-4\)
=>1/2 -x =4 1/2 -x= -4
=> x=1/2-4 x=1/2-(-4)
=>x=-7/2 x=9/2
vậy x∈{-7/2 ; 9/2}
\(\left(\dfrac{1}{2}\right)^{2x-1}=\dfrac{1}{16}\)
\(=>\left(\dfrac{1}{2}\right)^{2x-1}=\left(\dfrac{1}{2}\right)^4\)
\(=>2x-1=4\)
\(=>2x=5\)
\(=>x=\dfrac{5}{2}\)
\(a,\dfrac{3}{2}\cdot x-1=\dfrac{1}{2}x-\dfrac{3}{5}\)
\(\Rightarrow\dfrac{3}{2}x-\dfrac{1}{2}x=-\dfrac{3}{5}+1\)
\(\Rightarrow\left(\dfrac{3}{2}-\dfrac{1}{2}\right)x=-\dfrac{3}{5}+\dfrac{5}{5}\)
\(\Rightarrow x=\dfrac{2}{5}\)
\(b,\dfrac{1}{2}x+\dfrac{1}{2}\left(x-2\right)=\dfrac{3}{4}-2x\)
\(\Rightarrow\dfrac{1}{2}x+\dfrac{1}{2}x+2x-1=\dfrac{3}{4}\)
\(\Rightarrow\left(\dfrac{1}{2}+\dfrac{1}{2}+2\right)x=\dfrac{3}{4}+1\)
\(\Rightarrow3x=\dfrac{7}{4}\)
\(\Rightarrow x=\dfrac{7}{4}:3\)
\(\Rightarrow x=\dfrac{7}{12}\)
\(c,\left(x-\dfrac{1}{2}\right)-\dfrac{1}{4}=0\)
\(\Rightarrow x-\dfrac{1}{2}=\dfrac{1}{4}\)
\(\Rightarrow x=\dfrac{1}{4}+\dfrac{1}{2}\)
\(\Rightarrow x=\dfrac{1}{4}+\dfrac{2}{4}\)
\(\Rightarrow x=\dfrac{3}{4}\)
\(d,4^{x-3}+1=17\)
\(\Rightarrow4^{x-3}=17-1\)
\(\Rightarrow4^{x-3}=16\)
\(\Rightarrow4^{x-3}=4^2\)
\(\Rightarrow x-3=2\)
\(\Rightarrow x=2+3\)
\(\Rightarrow x=5\)
#Toru
`3/2 x -1 =1/2x -3/5`
`=> 3/2x -1/2x = -3/5 +1`
`=> 2/2x= -3/5 + 5/5`
`=> x= 2/5`
__
`1/2x +1/2(x-2) = 3/4 -2x`
`=> 1/2x + 1/2x - 2/2 = 3/4 -2x`
`=> 1/2x +1/2x +2x = 3/4 + 1`
`=> 1/2x +1/2x + 4/2x = 3/4 +4/4`
`=> 6/2x = 7/4`
`=> x= 7/4 : 3`
`=>x=7/12`
__
`(x-1/2) -1/4=0`
`=> x-1/2=1/4`
`=> x=1/4 +1/2`
`=> x= 1/4 +2/4`
`=>x=3/4`
__
`4^(x-3) +1=17`
`=> 4^(x-3) =17-1`
`=> 4^(x-3)=16`
`=> 4^(x-3)=4^2`
`=> x-3=2`
`=>x=2+3`
`=>x=5`
b) (5/2-3x)=25/9
3x = 5/2-25/9
3x =-5/18
x =-5/18:3
x=-5/54
\(e.\left(x-1\right)^5=-32\)
\(\left(x-1\right)^5=\left(-2\right)^5\)
\(x-1=-2\)
\(x\) \(=-2+1\)
\(x\) \(=-1\)
Vậy \(x=-1\)
Bài 2:
a: \(\Leftrightarrow\left(x-5\right)\left(x+5\right)-\left(x+5\right)=0\)
=>(x+5)(x-6)=0
=>x=-5 hoặc x=6
b: \(\Leftrightarrow4x^2-4x+1-4x^2+1=0\)
=>-4x+2=0
hay x=1/2
c: \(\Leftrightarrow\left(x^2+4\right)\left(x^2-1\right)=0\)
=>x=1 hoặc x=-1
Bài 1:
2\(x\) = 4
2\(^x\) = 22
\(x=2\)
Vậy \(x=2\)
Bài 2:
2\(^x\) = 8
2\(^x\) = 23
\(x=3\)
Vậy \(x=3\)
\(\left(9^{30}-27^{19}\right):3^{57}+\left(125^9-25^{12}\right):5^{24}\)
\(=\left(3^{60}-3^{57}\right):3^{57}+\left(5^{27}-5^{24}\right):5^{24}\)
\(=3^{57}\left(3^3-1\right):3^{57}+5^{24}\left(5^3-1\right):5^{24}\)
\(=3^3-1+5^3-1\)
\(=27-1+125-1\)
\(=150\)
2 )
\(x^2-25-\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-5\right)-\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-5-1\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=6\end{matrix}\right.\)
Vậy ...
b )
\(\left(2x-1\right)^2-\left(4x^2-1\right)=0\)
\(\Leftrightarrow4x^2-4x+1-4x^2+1=0\)
\(\Leftrightarrow2-4x=0\)
\(\Leftrightarrow4x=2\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy ...
c )
\(x^2\left(x^2+4\right)-x^2-4=0\)
\(\Leftrightarrow x^2\left(x^2+4\right)-\left(4+x^2\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=0\\x^2+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2=1\\x^2=-4\left(L\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy ...
\(25.\left(\dfrac{-1}{5}\right)^2+\dfrac{1}{5}-9.\left(\dfrac{-1}{9}\right)^2+\left(\dfrac{1}{9}\right)^{20}\)
\(=25.\dfrac{1}{25}+\dfrac{1}{5}-9.\dfrac{1}{81}+\left(\dfrac{1}{9}\right)^{20}\)
\(=1+\dfrac{1}{5}-\dfrac{1}{9}+\left(\dfrac{1}{9}\right)^{20}\)
\(=\dfrac{6}{5}+\dfrac{1}{9}\left[\left(-1\right)+\left(\dfrac{1}{9}\right)^{19}\right]\)
\(25\cdot\left(-\dfrac{1}{5}\right)^2+\dfrac{1}{5}-9\cdot\left(-\dfrac{1}{9}\right)^2+\left(\dfrac{1}{9}\right)^{20}\)
\(=25\cdot\dfrac{1}{25}+\dfrac{1}{5}-9\cdot\dfrac{1}{81}+\dfrac{1}{9^{20}}\)
\(=1+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9^{20}}\)
\(=\dfrac{49}{45}+\dfrac{1}{9^{20}}\)
Cậu xem lại đề bài nhé!