K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2017

\(Đề-HSG-Thái-Bình-2015-2016-hay-sao-ấy.\\ \)
 

13 tháng 7 2017

\(A=\left(\frac{1}{x}+2x\right)+\left(\frac{1}{y}+2y\right)+\left(\frac{1}{z}+2z\right)\)

Ta có BĐT phụ \(\frac{1}{x}+2x\ge\frac{1}{8x^2}+\frac{5}{2}\)

\(\Leftrightarrow\frac{\left(2x-1\right)^2\left(4x-1\right)}{8x^2}\ge0\) ( luôn đúng)

Tương tự ta cũng có: 

\(2y+\frac{1}{y}\ge\frac{1}{8y^2}+\frac{5}{2};2z+\frac{1}{z}\ge\frac{1}{8z^2}+\frac{5}{2}\)

Cộng theo vế 3 BĐT trên ta có;

\(A\ge\frac{1}{8}\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)+\frac{5}{2}\cdot3=9\)

Xảy ra khi \(x=y=z=\frac{1}{2}\)

21 tháng 8 2015

Xét hiệu: (x+y)(y+z)(z+x)-8xyz=0
(=) (x+y)>=2√xy
(y+z)>=2√yz
(z+x)>=2√zx
(=) (x+y)(y+z)(z+x)>=8√x^2 y^2 z^2
(=) (x+y)(y+z)(x+z)>=8|x| |y| |z|
(=) ( x+y)(y+z)(z+x)>= 8xyz

 

10 tháng 12 2016

vì x,y,z>0 nên áp dụng bđt côsi ta có

x+y >= 2\(\sqrt{xy}\)

y+z >= 2\(\sqrt{yz}\)

z+x >= 2\(\sqrt{xz}\)

\(\Rightarrow\)(x+y)(y+z)(z+x) >= 8\(\sqrt{x^2y^2z^2}\)

                                >= 8xyz

Dấu = xảy ra <=> x=y=z

11 tháng 12 2016

Ta có:

\(\frac{x}{x+1}=1-\frac{1}{x+1}\)

\(\frac{y}{y+1}=1-\frac{y}{y+1}\)

\(\frac{z}{z+4}=1-\frac{4}{z+4}\)

\(\Rightarrow\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+4}=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{4}{z+4}\right)\)

\(\le\left[3-\left(\frac{4}{x+y+2}+\frac{4}{z+4}\right)\right]\le\left(3-\frac{16}{x+y+z+6}\right)=3-\frac{16}{6}=\frac{1}{3}\)

 

 

 

8 tháng 5 2019

Áp dụng bất đẳng thức Cô-si ta có:

\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}\cdot2\sqrt{yz}\cdot2\sqrt{zx}\)

\(=8\sqrt{x^2y^2z^2}=8xyz\)

Dấu = khi x=y=z

21 tháng 8 2020

Ta có :\(\frac{x}{4y+z}=\frac{y}{4z+x}=\frac{z}{4x+y}=\frac{x+y+z}{4y+z+4z+x+4x+y}=\frac{x+y+z}{5\left(x+y+z\right)}=\frac{1}{5}\)

=> \(\hept{\begin{cases}\frac{x}{4y+z}=\frac{1}{5}\\\frac{y}{4z+x}=\frac{1}{5}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{4y+z}=\frac{1}{5}\\\frac{4z+x}{y}=5\end{cases}}\)

Khi đó A = 2019 - 1/5 + 5 = 2023,8

21 tháng 8 2020

\(\frac{x}{4y+z}=\frac{y}{4z+x}=\frac{z}{4x+y}=\frac{x+y+z}{4y+z+4z+x+4x+y}=\frac{x+y+z}{5\left(x+y+z\right)}=\frac{1}{5}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{4y+z}=\frac{1}{5}\\\frac{y}{4z+x}=\frac{1}{5}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{4y+z}=\frac{1}{5}\\\frac{4z+x}{y}=5\end{cases}}}\)

Khi đó \(A=2019-\frac{1}{5}+5=2013,8\)

NV
2 tháng 5 2019

\(P=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=\frac{9}{3}=3\)

\(\Rightarrow P_{min}=3\) khi \(x=y=z=1\)

2 tháng 5 2019

Sao lại lớn hơn hoặc bằng 9 /x+y+z ??

1 tháng 9 2016

\(x^4\left(y-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)\)

Ta có: \(x^4\ge0;y^4\ge0;z^4\ge0\)

\(x>y\Rightarrow x^4>y^4\)

\(y>z\Rightarrow y-z>0\) 

\(x>z\Rightarrow z-x< 0\) 

\(\Rightarrow y-z>z-x\)

 \(\Rightarrow x^4\left(y-z\right)+y^4\left(z-x\right)>0\)

\(x>y\Rightarrow x-y>0\)

Vậy: \(x^4\left(y-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)>0\)

NV
23 tháng 7 2020

\(\frac{x+y}{z}+\frac{x+z}{y}+\frac{y+z}{x}=\frac{x}{z}+\frac{y}{z}+\frac{x}{y}+\frac{z}{y}+\frac{y}{x}+\frac{z}{x}\ge6\sqrt[6]{\frac{x^2y^2z^2}{x^2y^2z^2}}=6\)

Dấu "=" xảy ra khi \(x=y=z\)