I x^2+3.I 2x+2017 I I = x^2+2019
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: =>x-2017=0 và y-2018=0
=>x=2017; y=2018
b: =>3x-y=0 và y+2/3=0
=>y=-2/3 và 3x=-2/3
=>x=-2/9 và y=-2/3
c: =>3/4x-1/2=0 và 4/5y+6/25=0
=>x=2/3 và y=-3/10
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Ta có: \(-\left|x+3\right|\le0\)
\(\Rightarrow A=-\left|x+3\right|+2017\le2017\)
Dấu " = " xảy ra khi \(-\left|x+3\right|=0\Rightarrow x=-3\)
Vậy \(MAX_A=2017\) khi x = -3
b, Ta có: \(\left\{{}\begin{matrix}-\left|30-x\right|\le0\\-\left|40+y\right|\le0\end{matrix}\right.\Rightarrow-\left|30-x\right|-\left|40+y\right|\le0\)
\(\Rightarrow B=120-\left|30-x\right|-\left|40+y\right|\le120\)
Dấu " = " xảy ra khi \(\left\{{}\begin{matrix}\left|30-x\right|=0\\\left|40+y\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=30\\y=-40\end{matrix}\right.\)
Vậy \(MAX_B=120\) khi x = 30, y = -40
c, Ta có: \(-\left|2x+1\right|\le0\)
\(\Rightarrow C=2016-\left|2x+1\right|\le2016\)
Dấu " = " xảy ra khi \(\left|2x+1\right|=0\Rightarrow x=\dfrac{-1}{2}\)
Vậy \(MAX_C=2016\) khi \(x=\dfrac{-1}{2}\)
d, Sai đề
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(A=\left(6x-1\right)^2+2017\)
Vì \(\left(6x-1\right)^2\ge0\)
Nên \(\left(6x-1\right)^2+2017\ge2017\)
Vậy GTNN của A=2017 khi \(6x-1=0\Leftrightarrow x=\dfrac{1}{6}\)
c) \(C=15+\left|2x-1\right|\)
Vì \(\left|2x-1\right|\ge0\)
Nên \(\left|2x-1\right|+15\ge15\)
Vậy GTNN của C=15 khi \(2x-1=0\Leftrightarrow x=\dfrac{1}{2}\)
d) \(D=\left(x-1\right)^2+\left(2x-y\right)^2+3\)
Vì \(\left(x-1\right)^2+\left(2x-y\right)^2\ge0\)
Nên \(\left(x-1\right)^2+\left(2x-y\right)^2+3\ge3\)
Vậy GTNN của D=3 khi \(\left\{{}\begin{matrix}x-1=0\\2x-y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\2.1-y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)
Câu d :
\(x=1\) mới đúng nha!
Dù sao mik cx cảm ơn bạn nhìu!
![](https://rs.olm.vn/images/avt/0.png?1311)