Tìm Max của P , biết :
\(P=\frac{x^2+2x+1}{x^2+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ý tưởng: Đặt \(xy=\frac{1}{k}\) hay \(y=\frac{1}{kx}\).
Ta có \(2x^2+\frac{1}{x^2}+\frac{4}{y^2}=4\Rightarrow2x^2+\frac{1}{x^2}+4k^2x^2=4\)
Suy ra \(\left(4k^2+2\right)x^4-4x^2+1=0\)
Đặt \(X=x^2\). Giả thiết trở thành \(\left(4k^2+2\right)X^2-4X+1=0\) (1), trong đó \(X\) dương.
Do \(X\) tồn tại (theo đề bài) nên có thể coi (1) là phương trình tham số \(k\), và phải có nghiệm dương.
\(\Delta'=2^2-\left(4k^2+2\right)=2-4k^2\)
Nhận xét: Nếu (1) có 2 nghiệm (tính cả nghiệm kép) thì tổng và tích của chúng đều dương nên 2 nghiệm là dương.
Vậy chỉ cần \(\Delta'\ge0\), tức là \(-\sqrt{2}\le\frac{1}{k}\le\sqrt{2}\)
Vậy min\(M=2016-\sqrt{2}\)(đẳng thức xảy ra tại \(x=-\frac{1}{\sqrt{2}},y=2\),
max\(M=2016+\sqrt{2}\) (đẳng thức xảy ra tại \(x=-\frac{1}{\sqrt{2}},y=-2\)
a)Áp dụng BĐT (x+y)^2>=4xy>>>(3a+5b)^2>=4.3a.5b>>>144>=60ab>>>ab<=12/5
Dấu=xảy ra khi 3a=5b hay khi a=7,5;b=4.5(không nên dùng Cô-si vì không chắc chắn là số dương).
b)Áp dụng BĐT Cô-si>>>(y+10)^2>=40y(do ở đây y>0 nên có thể dùng Cô-si)>>>A<=y/40y=1/40
Dấu= xảy ra khi y=10.
c)A=(x^2+x+1)/x^2+2x+1=1/2(2x^2+2x+1)/x^2+2x+1>>>A/2=(x^2+2x+1)/(x^2+2x+1)+x^2/(x^2+2x+1))>=1+0=1
Dấu= xảy ra khi x=0
1, A= y^3(1-y)^2 = 4/9 . y^3 . 9/4 (1-y)^2
= 4/9 .y.y.y . (3/2-3/2.y)^2
=4/9 .y.y.y (3/2-3/2.y)(3/2-3/2.y)
<= 4/9 (y+y+y+3/2-3/2.y+3/2-3/2.y)^5
=4/9 . 243/3125
=108/3125
Đến đó tự giải
\(y=\frac{2x+1}{x^2+2}\)
\(\Leftrightarrow yx^2-2x+2y-1=0\)(1)
Ta có: y thuộc miền giá trị của hàm số khi và chỉ khi (1) có nghiệm
Với: \(y=0\) thì x = -1/2
Với: \(y\ne0\) thì (1) có nghiệm khi: \(\Delta^'\ge0\)
\(\Leftrightarrow1^2-y\left(2y-1\right)\ge0\)
\(\Leftrightarrow-2y^2+y+1\ge0\)
\(\Leftrightarrow2y^2-y-1\le0\)
\(\Leftrightarrow-\frac{1}{2}\le y\le1\)
Vậy: Min y = -1/2 và Max y = 1
=.= hk tốt!!
\(y=\frac{2x+1}{x^2+2}\Leftrightarrow x^2y+2y-2x-1=0\)
Pt có nghiệm x<=>\(\Delta'=1-y\left(2y-1\right)=-2y^2+y+1\ge0\)\(\Leftrightarrow-\frac{1}{2}\le y\le1\)
Max y=1 \(\Leftrightarrow x^2-2x+1=0\Leftrightarrow x=1\)
\(Miny=-\frac{1}{2}\Leftrightarrow-\frac{1}{2}x^2-2x-2=0\Leftrightarrow x=-2\)
Bài này lớp 7 cũng giải được. Cần gì \(\Delta\) bé Thiên An
\(P=\frac{x^2+2x+1}{x^2+1}=\frac{\left(2x^2+2\right)-x^2+2x-1}{x^2+1}\)
\(=2-\frac{\left(x-1\right)^2}{x^2+1}\le2\)
Vậy GTLN là 2 đạt được khi x = 1
đề phải là: Tìm Min của P , biết :
\(P=\frac{x^2+2x+1}{x^2+1}\)
\(=\frac{\left(x+1\right)^2}{x^2+1}\)
\(Luôn...có:...x^2\ge0,với...mọi....x\)\(\Rightarrow x^2+1>0\)
\(\left(x+1\right)^2\ge0,với...mọi...x\)
\(\Rightarrow P_{Min}=0\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
\(Vậy...P_{Min}=0...khi...x=-1\)