K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2021

a, \(A=\left(\sqrt{12}-2\sqrt{5}\right)\sqrt{3}+\sqrt{60}\)

\(=\left(2\sqrt{3}-2\sqrt{5}\right)\sqrt{3}+2\sqrt{15}\)

\(=2\sqrt{9}-2\sqrt{15}+2\sqrt{15}=2\sqrt{9}\)

b, \(B=\frac{\sqrt{4x}}{x-3}\sqrt{\frac{x^2-6x+9}{x}}=\frac{2\sqrt{x}}{x-3}.\sqrt{\frac{\left(x-3\right)^2}{x}}\)

\(=\frac{2\sqrt{x}}{x-3}.\frac{x-3}{\sqrt{x}}=2\)

8 tháng 4 2021

em thiếu, giờ mới nhìn lại \(2\sqrt{9}=2.3=6\)

26 tháng 8 2020

a) \(x+3+\sqrt{x^2-6x+9}\left(x\le3\right)\)

\(=x+3+\sqrt{\left(x-3\right)^2}\)

\(=x+3+\left|x-3\right|\)

\(=x+3-\left(x-3\right)\)

\(=x+3-x+3\)

\(=6\)

b) \(\sqrt{x^2+4x+4}-\sqrt{x^2}\left(-2\le x\le0\right)\)

\(=\sqrt{\left(x+2\right)^2}-\sqrt{x^2}\)

\(=\left|x+2\right|-\left|x\right|\)

\(=x+2-\left(-x\right)\)

\(=x+2+x\)

\(=2x+2=2\left(x+1\right)\)

c) \(\frac{\sqrt{x^2-2x+1}}{x-1}\left(x>1\right)\)

\(=\frac{\sqrt{\left(x-1\right)^2}}{x-1}\)

\(=\frac{\left|x-1\right|}{x-1}\)

\(=\frac{x-1}{x-1}=1\)

d) \(\left|x-2\right|+\frac{\sqrt{x^2-4x+4}}{x-2}\)

\(=\left|x-2\right|+\frac{\sqrt{\left(x-2\right)^2}}{x-2}\)

\(=\left|x-2\right|+\frac{\left|x-2\right|}{x-2}\)

\(=\left|x-2\right|+\frac{-\left(x-2\right)}{x-2}\)

\(=\left|x-2\right|-1\)

\(=-\left(x-2\right)-1\)

\(=-x+2-1\)

\(=-x+1=-\left(x-1\right)\)

11 tháng 10 2020

a) Ta có: \(3x+2\sqrt{3x}+4=\left(\sqrt{3x}+1\right)^2+3>0;1+\sqrt{3x}>0,\forall x\ge0\), nên đk để A có nghĩa là

\(\left(\sqrt{3x}\right)^3-8-\left(\sqrt{3x}-2\right)\left(3x+2\sqrt{3x}+4\right)\ne0;x\ge0\Leftrightarrow\sqrt{3x}\ne2\Leftrightarrow0\le x\ne\frac{4}{3}\)

A=\(\left(\frac{6x+4}{\left(\sqrt{3x}\right)^3-2^3}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right)\left(\frac{1+\left(\sqrt{3x}\right)^3}{1+\sqrt{3x}}-\sqrt{3x}\right)\)

\(=\left(\frac{6x+4-\left(\sqrt{3x}-2\right)\sqrt{3x}}{\left(\sqrt{3x}-2\right)\left(3x+2\sqrt{3x}+4\right)}\right)\left(3x-\sqrt{3x}+1-\sqrt{3x}\right)\)

\(=\left(\frac{3x+4+2\sqrt{3x}}{\left(\sqrt{3x}-2\right)\left(3x+2\sqrt{3x}+4\right)}\right)\left(3x-2\sqrt{3x}+1\right)\)

\(=\frac{\left(\sqrt{3x}-1\right)^2}{\sqrt{3x}-2}\left(0\le x\ne\frac{4}{3}\right)\)

b) \(A=\frac{\left(\sqrt{3x}-1\right)^2}{\sqrt{3x}-2}=\frac{\left(\sqrt{3x}-2\right)^2+2\left(\sqrt{3x}-2\right)+1}{\sqrt{3x}-2}=\sqrt{3x}+\frac{1}{\sqrt{3x}-2}\)

Với \(x\ge0\), để A là số nguyên thì \(\sqrt{3x}-2=\pm1\Leftrightarrow\orbr{\begin{cases}\sqrt{3x}=3\\\sqrt{3x}=1\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=9\\3x=1\end{cases}\Leftrightarrow}x=3}\)  (vì \(x\in Z;x\ge0\))

Khi đó A=4