\(2\dfrac{3}{7}\) của 63 là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
2: =>(3x-7)^2=25/144=(5/12)^2
=>3x-7=5/12 hoặc 3x-7=-5/12
=>3x=5/12+7=89/12 hoặc 3x=7-5/12=79/12
=>x=89/36 hoặc x=79/36
3:Sửa đề: |2x-3|=|x+1|
=>2x-3=x+1 hoặc 2x-3=-x-1
=>x=4 hoặc 3x=2
=>x=2/3 hoặc x=4
4: =>3x+1=5 hoặc 3x+1=-5
=>3x=4 hoặc 3x=-6
=>x=-2 hoặc x=4/3
1: =>\(2x-7=\sqrt[3]{\dfrac{26}{63}}\)
=>\(2x=\sqrt[3]{\dfrac{26}{63}}+7\)
=>\(x=\dfrac{1}{2}\cdot\left(\sqrt[3]{\dfrac{26}{63}}+7\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
=>x(1-1/3+1/3-1/5+1/5-1/7+1/7-1/9)+99/x=-3/7
=>8/9x+99/x=-3/7
\(\Leftrightarrow\dfrac{8x}{9}+\dfrac{99}{x}=\dfrac{-3}{7}\)
\(\Leftrightarrow\dfrac{8x^2+99\cdot9}{9x}=\dfrac{-3}{7}\)
\(\Leftrightarrow-56x^2-6237=27x\)
hay \(x\in\varnothing\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(A=\sqrt{28}-\sqrt{63}+\dfrac{7+\sqrt{7}}{\sqrt{7}}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=2\sqrt{7}-3\sqrt{7}+\dfrac{\sqrt{7}\left(\sqrt{7}+1\right)}{\sqrt{7}}-\left|\sqrt{7}+1\right|\)
\(=-\sqrt{7}+\sqrt{7}+1-\sqrt{7}-1=-\sqrt{7}\)
\(B=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-3}\right)\dfrac{4\sqrt{x}+12}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}-3+\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}=\dfrac{2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}\)
\(=\dfrac{8}{\sqrt{x}-3}\)
b) \(A>B\Rightarrow-\sqrt{7}>\dfrac{8}{\sqrt{x}-3}\Rightarrow\dfrac{8}{\sqrt{x}-3}+\sqrt{7}< 0\)
\(\Rightarrow\dfrac{\sqrt{7x}+8-3\sqrt{7}}{\sqrt{x}-3}< 0\)
Ta có: \(\left\{{}\begin{matrix}8=\sqrt{64}\\3\sqrt{7}=\sqrt{63}\end{matrix}\right.\Rightarrow8-3\sqrt{7}>0\Rightarrow8-3\sqrt{7}+\sqrt{7x}>0\)
\(\Rightarrow\sqrt{x}-3< 0\Rightarrow\sqrt{x}< 3\Rightarrow x< 9\Rightarrow0< x< 9\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\left(-\dfrac{1}{3}\sqrt{63}\right)^2=\dfrac{1}{9}\cdot63=7\)
\(\left(-2\sqrt{2}\right)^2=8\)
mà 7<8
nên \(-\dfrac{1}{3}\sqrt{63}>-2\sqrt{2}\)
b) Ta có: \(\left(2\sqrt{55}\right)^2=4\cdot55=220\)
\(\left(\dfrac{3}{5}\sqrt{750}\right)=\dfrac{9}{25}\cdot750=270\)
mà 220<270
nên \(2\sqrt{55}< \dfrac{3}{5}\sqrt{750}\)
hay \(-2\sqrt{55}< -\dfrac{3}{5}\sqrt{750}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Q=\(\dfrac{1}{2}+\left(\dfrac{3}{4}+\dfrac{7}{8}\right)+\left(\dfrac{15}{16}+\dfrac{31}{32}\right)+\left(\dfrac{63}{64}+\dfrac{127}{128}\right)-6\)
Q=\(\dfrac{1}{2}+\dfrac{13}{8}+\dfrac{61}{32}+\dfrac{253}{128}\)\(-6\)
Q= \(\dfrac{64}{128}+\dfrac{208}{128}+\dfrac{244}{128}+\dfrac{253}{128}-6\)
Q= \(\dfrac{769}{128}-6\)
Q=\(\dfrac{769}{128}-\dfrac{768}{128}\)
Q= \(\dfrac{1}{128}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
2/7 của 63/91
=63/91. 2/7
=18/91
chú thích : / là phần nha
\(2\dfrac{3}{7}.63=152\)
152