K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2018

Bài 1:

Ta có:

\(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)

Ta có:

\(-\left(4x-x^2-5\right)=-4x+x^2+5=x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\ge1>0\)

\(\Rightarrow4x-x^2-5< 0\)

24 tháng 3 2020

-(y^2-2y+1)-3=-(y-1)^2-3=<-3<0

Max=-3 <=>y=1

24 tháng 3 2020

Bạn tham khảo nhé :

https://olm.vn/hoi-dap/detail/104880761126.html

#hoc_tot#

12 tháng 11 2019

Áp dụng BĐT Cô - si cho 2 số không âm:

\(\frac{x^6}{y^2}+x^2y^2\ge2\sqrt{\frac{x^8y^2}{y^2}}=2x^4\)

\(\frac{y^6}{x^2}+x^2y^2\ge2\sqrt{\frac{y^8x^2}{x^2}}=2y^4\)

Cộng từng các BĐT trên:

\(\frac{x^6}{y^2}+2x^2y^2+\frac{y^6}{x^2}\ge2x^4+2y^4\)

\(\Leftrightarrow\frac{x^6}{y^2}+\frac{y^6}{x^2}\ge x^4+x^4+y^4+y^4-2x^2y^2\)

\(\Leftrightarrow\frac{x^6}{y^2}+\frac{y^6}{x^2}\ge x^4+y^4+\left(x^2-y^2\right)^2\ge x^4+y^4\)

Vậy \(\frac{x^6}{y^2}+\frac{y^6}{x^2}\ge x^4+y^4\)

(Dấu "="\(\Leftrightarrow\orbr{\begin{cases}x=y\\x=-y\end{cases}}\))

23 tháng 2 2020

\(\Leftrightarrow-1-\left(x-y\right)^2\le-1< 0\)

11 tháng 8 2017

Ta có : x2 - 2xy + y2 + 1 = (x - y)2 + 1

Vì : \(\left(x-y\right)^2\ge0\forall x\in R\)

Nên : \(\left(x-y\right)^2+1\ge1\forall x\in R\)

Suy ra : \(\left(x-y\right)^2+1>0\forall x\in R\)

Vậy x2 - 2xy + y2 + 1 \(>0\forall x\in R\)

Ta có : x - x2 - 1

= -(x2 - x + 1)

\(=-\left(x^2-x+\frac{1}{4}+\frac{3}{4}\right)\)

\(=-\left(x^2-x+\frac{1}{4}\right)-\frac{3}{4}\)

\(=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)

Vì : \(-\left(x-\frac{1}{2}\right)^2\le0\forall x\in R\)

Nên : \(-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}< 0\)

Vậy x - x2 - 1 \(< 0\forall x\in R\)

11 tháng 8 2017

hỏi tí cái chữ A ngược đó là gì vậy bạn

26 tháng 7 2016

a)\(x^2+2xy+1+y^2=\left(x+y\right)^2+1\)

Vì \(\left(x+y\right)^2\ge0\)với mọi \(x,y\in\)

nên \(\left(x+y\right)^2+1>0\)với mọi \(x,y\in R\)

Vậy biểu thức \(x^2+2xy+y^2+1>0\left(x;y\in R\right)\)

b) \(-x^2+x-1=-\left(x^2-2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\left(x\in R\right)\)

nên \(-\left(x-\frac{1}{2}\right)^2\le0\left(x\in R\right)\)

do đó \(-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}< 0\left(x\in R\right)\)

Vậy biểu thức \(x-x^2-1< 0\left(x\in R\right)\)

14 tháng 9 2018

a) x2 + 2xy + 1 +y2 = (x2+2xy+y2)+1=(x+y)2+1 mà (x+y)2 luôn lớn hơn hoặc bằng 0 với mọi x,y

=>x2+2xy+1+y2>1>0

b)x-x2-1=-(x2-x+1)=-((x2-2.x.0,5+0,25)+0,75)=-((x-0,5)2+0,75) mà (x-0,5)2 luôn lớn hơn hoặc bằng 0 vớ mọi x

=>x-x2-1<0

TƯỞNG KHÔNG DỄ NHƯNG DỄ KHÔNG TƯỞNG!

27 tháng 10 2018

a ) Đề sai

b ) \(x^2-x+1=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\left(đpcm\right)\)

c ) \(x-x^2-2=-\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{7}{4}=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{7}{4}\le-\dfrac{7}{4}< 0\forall x\left(đpcm\right)\)