K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2023

  \(x^{^{ }4}\) + 56 = 137

  \(x^4\)         = 137 - 56

  \(x^4\)         = 81

  \(x^4\)         = 34

  \(x\)           = 3

1 tháng 10 2023

1+1

1+2

Bằng bao nhiêu

 

AH
Akai Haruma
Giáo viên
12 tháng 4 2023

Lời giải:

$3x^2+x=4y^2+y$

$\Leftrightarrow 4(y^2-x^2)+(y-x)=-x^2$

$\Leftrightarrow (y-x)[4(x+y)+1]=x^2$

$\Leftrightarrow (x-y)[4(x+y)+1]=x^2$

Gọi $d=(x-y, 4x+4y+1)$

Khi đó: $x-y\vdots d(1); 4x+4y+1\vdots d(2)$. Mà $x^2=(x-y)(4x+4y+1)$ nên $x^2\vdots d^2$
$\Rightarrow x\vdots d(3)$.

Từ $(1); (3)\Rightarrow y\vdots d$

Từ $x,y\vdots d$ và $4x+4y+1\vdots d$ suy ra $1\vdots d$

$\Rightarrow d=1$

Vậy $x-y, 4x+4y+1$ nguyên tố cùng nhau. Mà tích của chúng là scp $(x^2)$ nên bản thân mỗi số trên cũng là scp.

Đặt $4x+4y+1=t^2$ với $t$ tự nhiên.

Khi đó: $A=2xy+4(x+y)^3+x^2+y^2=(x+y)^2+4(x+y)^3=(x+y)^2[1+4(x+y)]$

$=(x+y)^2t^2=[t(x+y)]^2$ là scp

Ta có đpcm.

18 tháng 6 2021

Vì \(\sqrt{n}\in Q\).Đặt \(\sqrt{n}=\dfrac{a}{b}\left(a,b\in N\left(a,b\right)=1\right)\)

\(\Rightarrow n=\dfrac{a^2}{b^2}\) mà \(n\in N\Rightarrow\dfrac{a^2}{b^2}\in N\Rightarrow\left[{}\begin{matrix}a⋮b\\b=1\end{matrix}\right.\)

mà \(\left(a,b\right)=1\Rightarrow b=1\Rightarrow\sqrt{n}=a\in N\Rightarrow\) đpcm

26 tháng 10 2016

làm lại

Ta có : xϵN nên 2017^x>0. Mà|y2016|>0

=>2017^x+1+|y2016|>0=>y2016>0

=>|y2016|=y2016

Ta lại có

2017^x+1+y2016=y2016

=>2017^x+1=0

=>2017^x=-1(vô lý vì 2017^x>0)

Từ trên suy ra không có giá trị x, y thỏa mãn đề bài

Vậy không có giá trị x, y thỏa mãn đề bài

 

 

26 tháng 10 2016

Vì x là số tự nhiên nên 2017^x>0.

y-2016 >0

Suy ra: 2017^x+1+y-2016 >0

=>y-2016>0=>y-2016 =y-2016

Ta có

2017^x+1+y-2016=y-2016

=>2017^x+1=0

=>2017^x=-1(vô lý vì 2017^x>0)

Từ trên suy ra : không có giá trị cuả x,y thỏa mãn đề bài

Vậy không có giá trị cuả x,y thỏa mãn đề bài

 

 

 

 

 

 

11 tháng 1 2023

Có \(x^2+3t^2=1\Leftrightarrow x^2=1-3t^2\le1\) (1)

Lại có \(x^2\ge0\forall x\) (2)

Từ (1) và (2) => \(0\le x^2\le1\)

=> \(x\in\left\{-1;0;1\right\}\) (Vì \(x;t\inℤ\))

Thay x = -1 => t = 0 (tm)

Thay x = 0 =>  \(t=\pm\sqrt{\dfrac{1}{3}}\) (loại)

Thay x = 1 => t = 0 (tm)

Vậy (x,t) = (1;0) ; (-1 ; 0) 

22 tháng 12 2021

\(\left(x-y\right)^2\ge0\)

\(\Rightarrow\left(x+y\right)^2\ge4xy\)

\(\Rightarrow xy\le\dfrac{\left(x+y\right)^2}{4}=\dfrac{2019^2}{4}\)

Dấu = xảy ra khi \(x=y=\dfrac{2019}{2}\)

22 tháng 12 2021

\(P_{max}=1019090\)

30 tháng 1 2018

Đáp án D.