K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2023

\(a)\dfrac{7}{8}=\dfrac{7\times9}{8\times9}=\dfrac{63}{72}\)

\(\dfrac{3}{9}=\dfrac{3\times8}{9\times8}=\dfrac{24}{72}\)

Do : \(\dfrac{63}{72}>\dfrac{24}{72}\) nên \(\dfrac{7}{8}>\dfrac{3}{9}\)

Không thì bạn có thể rút gọn 3/9 đi làm cho nó gọn ạ.

\(b)\) Ta thấy : \(\dfrac{2023}{2021}>1\) ( vì tử lớn hơn mẫu )

                   \(\dfrac{2021}{2022}< 1\) ( vì tử bé hơn mẫu )

Do đó : \(\dfrac{2023}{2021}>\dfrac{2021}{2022}\)

\(c)\dfrac{5}{6}=\dfrac{5\times7}{6\times7}=\dfrac{35}{42}\)

\(\dfrac{6}{7}=\dfrac{6\times6}{7\times6}=\dfrac{36}{42}\)

Do : \(\dfrac{36}{42}>\dfrac{35}{42}\)  nên \(\dfrac{6}{7}>\dfrac{5}{6}\)

11 tháng 9 2023

không câu SP nhé

a: \(B=\dfrac{154}{155+156}+\dfrac{155}{155+156}\)

\(\dfrac{154}{155}>\dfrac{154}{155+156}\)

\(\dfrac{155}{156}>\dfrac{155}{155+156}\)

=>154/155+155/156>(154+155)/(155+156)

=>A>B

b: \(C=\dfrac{2021+2022+2023}{2022+2023+2024}=\dfrac{2021}{6069}+\dfrac{2022}{6069}+\dfrac{2023}{6069}\)

2021/2022>2021/6069

2022/2023>2022/2069

2023/2024>2023/6069

=>D>C

26 tháng 11 2023

a:

Sửa đề: \(S=1-3+5-7+...+2021-2023+2025\)

Từ 1 đến 2025 sẽ có:

\(\dfrac{2025-1}{2}+1=\dfrac{2024}{2}+1=1013\left(số\right)\)

Ta có: 1-3=5-7=...=2021-2023=-2

=>Sẽ có \(\dfrac{1013-1}{2}=\dfrac{1012}{2}=506\) cặp có tổng là -2 trong dãy số này

=>\(S=506\cdot\left(-2\right)+2025=2025-1012=1013\)

b: \(S=1+2-3-4+5+6-7-8+...+2021+2022-2023-2024\)

Từ 1 đến 2024 là: \(\dfrac{\left(2024-1\right)}{1}+1=2024\left(số\right)\)

Ta có: 1+2-3-4=5+6-7-8=...=2021+2022-2023-2024=-4

=>Sẽ có \(\dfrac{2024}{4}=506\) cặp có tổng là -4 trong dãy số này

=>\(S=506\cdot\left(-4\right)=-2024\)

3 tháng 5 2023

B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + \(\dfrac{2022}{1}\)

B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + 2022

B = 1 + ( 1 + \(\dfrac{1}{2022}\)) + ( 1 + \(\dfrac{2}{2021}\)) + \(\left(1+\dfrac{3}{2020}\right)\)+ ... + \(\left(1+\dfrac{2021}{2}\right)\) 

B = \(\dfrac{2023}{2023}\) + \(\dfrac{2023}{2022}\) + \(\dfrac{2023}{2021}\) + \(\dfrac{2023}{2020}\) + ...+ \(\dfrac{2023}{2}\) 

B = 2023 \(\times\) ( \(\dfrac{1}{2023}\) + \(\dfrac{1}{2022}\) + \(\dfrac{1}{2021}\) + \(\dfrac{1}{2020}\)+ ... + \(\dfrac{1}{2}\))

Vậy B > C 

 

3 tháng 1 2024

S  = (1 + 2 - 3 - 4) + (5 + 6 - 7 - 8) + ... + (2017 + 2018 - 2019 - 2020) + (2021 - 2022 + 2023)       (nhóm các số hạng vào 505 nhóm, mỗi nhóm có 4 số hạng, thừa ra 3 số hạng nhóm vào 1 nhóm là 506 nhóm)
S = -4 + (-4) + ... + (-4) + 2022
S = -4 x 505 + 2022
S = -2022 + 2022
S = 0

3 tháng 1 2024

S  = (1 + 2 - 3 - 4) + (5 + 6 - 7 - 8) + ... + (2017 + 2018 - 2019 - 2020) + (2021 - 2022 + 2023)       (nhóm các số hạng vào 505 nhóm, mỗi nhóm có 4 số hạng, thừa ra 3 số hạng nhóm vào 1 nhóm là 506 nhóm)
S = -4 + (-4) + ... + (-4) + 2022
S = -4 x 505 + 2022
S = -2022 + 2022
S = 0

AH
Akai Haruma
Giáo viên
14 tháng 7 2023

Lời giải:

$A=(-1-2+3+4)+(-5-6+7+8)+(-9-10+11+12)+...+(-2021-2022+2023+2024)-2024$

$=\underbrace{4+4+...+4}_{506}-2024$
$=4.506-2024=0$

\(\dfrac{1}{10}A=\dfrac{10^{2023}+5}{10^{2023}+50}=1-\dfrac{45}{10^{2023}+50}\)

\(\dfrac{1}{10}B=\dfrac{10^{2022}+5}{10^{2022}+50}=1-\dfrac{45}{10^{2022}+50}\)

10^2023+50>10^2022+50

=>-45/10^2023+50<-45/10^2020+50

=>1/10A<1/10B

=>A<B

16 tháng 2 2023

A phải lớn hơn B vì phần bù của số nào nhỏ hơn thì số đó lớn hơn bạn nhé. Nhưng dù sao cx động viên bạn, mình tick cho. Cảm ơn bạn nhiều

22 tháng 12 2023

a: \(\dfrac{4}{9}=\dfrac{4\cdot2}{9\cdot2}=\dfrac{8}{18}< \dfrac{13}{18}\)

b: 34/-4=-8,5

Ta có: 8,5<8,6

=>-8,5>-8,6

=>\(\dfrac{34}{-4}>-8,6\)

c: \(\dfrac{2021}{2022}=1-\dfrac{1}{2022}\)

\(\dfrac{2022}{2023}=1-\dfrac{1}{2023}\)

Ta có: 2022<2023

=>\(\dfrac{1}{2022}>\dfrac{1}{2023}\)

=>\(-\dfrac{1}{2022}< -\dfrac{1}{2023}\)

=>\(-\dfrac{1}{2022}+1< -\dfrac{1}{2023}+1\)

=>\(\dfrac{2021}{2022}< \dfrac{2022}{2023}\)

22 tháng 12 2023

34/-4=-8,5 là sao v

25 tháng 12 2023

Sửa đề: 1-2-3+4+5-6-7+8+...-2018-2019+2020+2021-2022-2023

=(1-2-3+4)+(5-6-7+8)+...+(2017-2018-2019+2020)+(2021-2022-2023)

=0+0+...+0+(-1-2023)

=-2024