Quy đồng mẫu thức của hai phân thức \(\frac{1}{{x + 1}}\)và \(\frac{1}{x}\); trừ các tử thức nhận được và giữ nguyên mẫu thức chung để tính \(\frac{1}{{x + 1}} - \frac{1}{x}\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023
Ta có:3x2 −3=3(x2−1)=3(x−1)(x+1)
x3 −1=(x−1)(x2 + x + 1)
MTC= 3(x−1)(x+1)(x2 + x + 1)
Nhân tử phụ của 3x2 − 3 là x2 + x + 1
Nhân tử phụ của x3 − 1 là 3(x+1)
Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng, ta có:
\(\frac{1}{{3{{\rm{x}}^2} - 3}} = \frac{{{x^2} + x + 1}}{{3\left( {{x^2} - 1} \right)\left( {{x^2} + x + 1} \right)}} = \frac{{{x^2} + x + 1}}{{3\left( {x - 1} \right)\left( {x + 1} \right)\left( {{x^2} + x + 1} \right)}}\)
\(\frac{1}{{{x^3} - 1}} = \frac{{3\left( {x + 1} \right)}}{{3\left( {x - 1} \right)\left( {x + 1} \right)\left( {{x^2} + x + 1} \right)}}\)
QT
1
HL
0
MTC = x(x + 1)
Nhân tử phụ của x+1 là: x
Nhân tử phụ của x là: x+1
=> Ta có \(\frac{1}{{x + 1}} = \frac{x}{{x\left( {x + 1} \right)}}\) và \(\frac{1}{x} = \frac{{x + 1}}{{x\left( {x + 1} \right)}}\)
Trừ các tử thức của hai phân thức, có: x – x – 1 = -1
\( \Rightarrow \frac{1}{{x + 1}} - \frac{1}{x} = \frac{{ - 1}}{{x\left( {x + 1} \right)}}\)