tìm x:\(3^{\left|2x\right|+1}+3^{\left|2x\right|}\)|=324
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(\Leftrightarrow2x^2-10x-3x-2x^2=0\)
=>-13x=0
=>x=0
2: \(\Leftrightarrow5x-2x^2+2x^2-2x=13\)
=>3x=13
=>x=13/3
3: \(\Leftrightarrow4x^4-6x^3-4x^3+6x^3-2x^2=0\)
=>-2x^2=0
=>x=0
4: \(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)
=>-8x=6-14=-8
=>x=1
`1)2x(x-5)-(3x+2x^2)=0`
`<=>2x^2-10x-3x-2x^2=0`
`<=>-13x=0`
`<=>x=0`
___________________________________________________
`2)x(5-2x)+2x(x-1)=13`
`<=>5x-2x^2+2x^2-2x=13`
`<=>3x=13<=>x=13/3`
___________________________________________________
`3)2x^3(2x-3)-x^2(4x^2-6x+2)=0`
`<=>4x^4-6x^3-4x^4+6x^3-2x^2=0`
`<=>x=0`
___________________________________________________
`4)5x(x-1)-(x+2)(5x-7)=0`
`<=>5x^2-5x-5x^2+7x-10x+14=0`
`<=>-8x=-14`
`<=>x=7/4`
___________________________________________________
`5)6x^2-(2x-3)(3x+2)=1`
`<=>6x^2-6x^2-4x+9x+6=1`
`<=>5x=-5<=>x=-1`
___________________________________________________
`6)2x(1-x)+5=9-2x^2`
`<=>2x-2x^2+5=9-2x^2`
`<=>2x=4<=>x=2`
\(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)-3x^2=54\)
\(\Leftrightarrow x^3+9x^2+27x+27-x\left(9x^2+6x+1\right)+8x^3+1-3x^2=54\)
=>\(9x^3+6x^2+27x+28-9x^3-6x^2-x=54\)
=>26x+28=54
=>26x=26
=>x=26/26=1
a: \(P=\left(\dfrac{3x+6}{2\left(x^2+4\right)}-\dfrac{2x^2-x-10}{\left(x+1\right)\left(x^2+1\right)}\right):\left(\dfrac{10\left(x^2-1\right)+3\left(x^2+1\right)\left(x-1\right)-6\left(x+1\right)\left(x^2+1\right)}{\left(x^2+1\right)\left(x+1\right)\left(x-1\right)\cdot2}\right)\cdot\dfrac{2}{x-1}\)
\(=\left(\dfrac{\left(3x+6\right)\left(x^3+x^2+x+1\right)-\left(2x^2+8\right)\left(2x^2-x-10\right)}{2\left(x^2+4\right)\left(x+1\right)\left(x^2+1\right)}\right)\cdot\dfrac{\left(x^2+1\right)\left(x-1\right)\left(x+1\right)\cdot2}{-3x^3+x^2-3x-13}\cdot\dfrac{2}{x-1}\)
\(=\dfrac{-x^4+11x^3+13x^2+17x+16}{\left(x^2+4\right)}\cdot\dfrac{2}{-3x^3+x^2-3x-13}\)
a) \(2x\left(x-5\right)-x\left(3+2x\right)=26\)
\(\Rightarrow2x^2-10x-3x-2x^2=26\)
\(\Rightarrow-13x=26\Rightarrow x=-2\)
b) \(3x\left(1-2x\right)+2\left(3x+7\right)=29\)
\(\Rightarrow3x-6x^2+6x+14=29\)
\(\Rightarrow-6x^2+9x-15=0\)
\(\Rightarrow-6\left(x^2-\dfrac{3}{2}x+\dfrac{9}{16}\right)-\dfrac{93}{8}=0\)
\(\Rightarrow-6\left(x-\dfrac{3}{4}\right)^2-\dfrac{93}{8}=0\)(vô lý)
Vậy \(S=\varnothing\)
a) Ta có: \(\left|2x-1\right|=\left|2x+3\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=2x+3\left(loại\right)\\2x-1=-2x-3\end{matrix}\right.\Leftrightarrow2x+2x=-3+1\)
\(\Leftrightarrow4x=-2\)
hay \(x=-\dfrac{1}{2}\)
a: ta có: \(\dfrac{\left(x+2\right)^2}{2}+\dfrac{\left(2x+1\right)^2}{4}+\dfrac{\left(2x-1\right)^2}{8}-\left(x+1\right)^2=0\)
\(\Leftrightarrow4\left(x^2+4x+4\right)+2\left(4x^2+4x+1\right)+4x^2-4x+1-8\left(x+1\right)^2=0\)
\(\Leftrightarrow4x^2+16x+16+8x^2+8x+2+4x^2-4x+1-8\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow16x^2+20x+19-8x^2-16x-8=0\)
\(\Leftrightarrow8x^2+4x+11=0\)
\(\text{Δ}=4^2-4\cdot8\cdot11=-336< 0\)
Vì Δ<0 nên phương trình vô nghiệm
b.
PT \(\Leftrightarrow \frac{x^2+2x+1}{2}-\frac{4x^2-4x+1}{3}+\frac{4x^2+4x+1}{4}-\frac{x^2-10x+25}{6}=0\)
\(\Leftrightarrow \left(\frac{x^2+2x+1}{2}+\frac{4x^2+4x+1}{4}\right)-\left(\frac{4x^2-4x+1}{3}+\frac{x^2-10x+25}{6}\right)=0\)
\(\Leftrightarrow \frac{6x^2+8x+3}{4}-\frac{9x^2-18x+27}{6}=0\)
\(\Leftrightarrow \frac{3(6x^2+8x+3)-2(9x^2-18x+27)}{12}=0\)
$\Leftrightarrow 5x-\frac{15}{4}=0$
$\Leftrightarrow x=\frac{3}{4}$