Cho a,b,c dương. Chứng minh:
√c(a-c) +√c(b-c) - √ab <=0
Ai giúp hộ mình với,đang cần gấp :v, tks trc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a2+b2+c2+3=2a+2b+2c
=>a2-2a+1+b2-2b+1+c2-2c+1=0 (chuyển vế và tách 3=1+1+1)
<=>(a-1)2+(b-1)2+(c-1)2=0 (1)
vì (a-1)2>=0
(b-1)2 >=0
(c-1)2>=0
do đó (a-1)2+(b-1)2+(c-1)2>=0 với mọi a,b,c (2)
từ (1) và (2)=>a-1=b-1=c-1=0
=>a=b=c=1 (dpcm)
a.(b-c)+c.(a-b)
= ab - ac + ac - bc
= ab - bc
= b(a - c)
a.(b-c)-b.(a+c)
= ab - ac - ba - bc
= -ac - bc
= -c(a + b)
a.(b+c)-b.(a-c)
= ab + ac - ba + bc
= ac + bc
= c(a + b)
không cần k đâu bạn à
P.s: xin lỗi bn vì mấy thg ko có não này spam
\(BDT\Leftrightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT^2=\left(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\right)^2\)
\(\le\left(c+a-c\right)\left(c+b-c\right)=ab\)
\(\Rightarrow VT^2\le ab\Rightarrow VT\le\sqrt{ab}=VP\)
ai k mình k lại nhưng phải lên điểm mình tích gấp đôi